Suppr超能文献

使用EvoLearn方法的精确深度学习预测模型的有效权重优化策略。

Effective weight optimization strategy for precise deep learning forecasting models using EvoLearn approach.

作者信息

Bedi Jatin, Anand Ashima, Godara Samarth, Bana Ram Swaroop, Faiz Mukhtar Ahmad, Marwaha Sudeep, Parsad Rajender

机构信息

Thapar Institute of Engineering And Technology, Patiala, Punjab, India.

ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India.

出版信息

Sci Rep. 2024 Aug 29;14(1):20139. doi: 10.1038/s41598-024-69325-3.

Abstract

Time series analysis and prediction have attained significant attention from the research community in the past few decades. However, the prediction accuracy of the models highly depends on the models' learning process. In order to optimize resource usage, a better learning methodology, in terms of accuracy and learning time, is needed. In this context, the current research work proposes EvoLearn, a novel method to improve and optimize the learning process of neural-based models. The presented technique integrates the genetic algorithm with back-propagation to train model weights during the learning process. The fundamental idea behind the proposed work is to select the best components from multiple models during the training process to obtain an adequate model. To demonstrate the applicability of EvoLearn, the method is tested on the state-of-the-art neural models (namely MLP, DNN, CNN, RNN, and GRU), and performances are compared. Furthermore, the presented study aims to forecast two types of time series, i.e. air pollution and energy consumption time series, using the developed framework. In addition, the considered neural models are tested on two datasets of each time series type. From the performance comparison and evaluation of EvoLearn using a one-tailed paired T-test against the conventional back-propagation-based learning approach, it was found that the proposed method significantly improves the prediction accuracy.

摘要

在过去几十年里,时间序列分析与预测受到了研究界的广泛关注。然而,模型的预测精度在很大程度上取决于模型的学习过程。为了优化资源利用,需要一种在准确性和学习时间方面更好的学习方法。在此背景下,当前的研究工作提出了EvoLearn,这是一种改进和优化基于神经网络模型学习过程的新方法。所提出的技术将遗传算法与反向传播相结合,在学习过程中训练模型权重。该提议工作背后的基本思想是在训练过程中从多个模型中选择最佳组件,以获得一个合适的模型。为了证明EvoLearn的适用性,该方法在最先进的神经网络模型(即多层感知器、深度神经网络、卷积神经网络、循环神经网络和门控循环单元)上进行了测试,并对性能进行了比较。此外,本研究旨在使用所开发的框架预测两种类型的时间序列,即空气污染和能源消耗时间序列。此外,所考虑的神经网络模型在每种时间序列类型的两个数据集上进行了测试。通过使用单尾配对t检验对EvoLearn与传统的基于反向传播的学习方法进行性能比较和评估,发现所提出的方法显著提高了预测精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb2b/11362460/19afe7307468/41598_2024_69325_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验