Suppr超能文献

深度学习算法预测突发性感音神经性听力损失的听力恢复情况。

Prediction of hearing recovery with deep learning algorithm in sudden sensorineural hearing loss.

机构信息

Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea.

Department of Computer Science, Hanyang University, Seoul, Republic of Korea.

出版信息

Sci Rep. 2024 Aug 29;14(1):20058. doi: 10.1038/s41598-024-70436-0.

Abstract

This study aimed to establish a deep learning-based predictive model for the prognosis of idiopathic sudden sensorineural hearing loss (SSNHL). Data from 1108 patients with SSNHL between January 2015 and May 2023 were retrospectively analyzed. Patients underwent standardized treatment protocols including high-dose steroid therapy and hearing outcomes were assessed after three months using Siegel's criteria and the American Academy of Otolaryngology-Head and Neck Surgery (AAO-HNS) classification. For predicting patient recovery, a two-layered classification process was implemented. Initially, a set of 22 Multilayer Perceptrons (MLP) networks was employed to categorize the patients. The outcomes from this initial categorization were subsequently relayed to a second-layer meta-classifier for final prognosis determination. The validity of this methodology was ascertained through a K-fold cross-validation procedure executed with 10 distinct splits. The prediction model for complete recovery, based on Siegel's criteria, demonstrated an accuracy of 0.892 and area under the curve (AUC) of 0.922. For the class A prediction, according to AAO-HNS classification, the model showed an accuracy of 0.847 and AUC of 0.918. These results suggest that the model may have the potential to contribute to the establishment of tailored patient management strategies by predicting hearing recovery in patients with SSNHL.

摘要

本研究旨在建立基于深度学习的特发性突发性聋(SSNHL)预后预测模型。回顾性分析了 2015 年 1 月至 2023 年 5 月期间 1108 例 SSNHL 患者的数据。患者接受了包括大剂量类固醇治疗在内的标准化治疗方案,三个月后采用 Siegel 标准和美国耳鼻喉科学-头颈外科学会(AAO-HNS)分类评估听力结果。为了预测患者的恢复情况,采用了两层分类过程。首先,使用了一组 22 个多层感知器(MLP)网络对患者进行分类。然后,将初始分类的结果传递给第二层元分类器,以最终确定预后。该方法的有效性通过 10 个不同的折进行的 K 折交叉验证程序得到了验证。基于 Siegel 标准的完全恢复预测模型的准确率为 0.892,曲线下面积(AUC)为 0.922。对于 AAO-HNS 分类的 A 类预测,该模型的准确率为 0.847,AUC 为 0.918。这些结果表明,该模型可能有潜力通过预测 SSNHL 患者的听力恢复,为制定个性化的患者管理策略做出贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a82e/11362143/457a7a0f7f59/41598_2024_70436_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验