Suppr超能文献

来自(半)纤维素的可持续航空燃料分子:合成路线、燃料特性及过程化学指标的计算洞察

Sustainable Aviation Fuel Molecules from (Hemi)Cellulose: Computational Insights into Synthesis Routes, Fuel Properties, and Process Chemistry Metrics.

作者信息

Chang Chin-Fei, Paragian Kristin, Sadula Sunitha, Rangarajan Srinivas, Vlachos Dionisios G

机构信息

Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton Street, Bethlehem, Pennsylvania 18015, United States.

Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19711, United States.

出版信息

ACS Sustain Chem Eng. 2024 Aug 13;12(34):12927-12937. doi: 10.1021/acssuschemeng.4c04199. eCollection 2024 Aug 26.

Abstract

Production of sustainable aviation fuels (SAFs) can significantly reduce the aviation industry's carbon footprint. Current pathways that produce SAFs in significant volumes from ethanol and fatty acids can be costly, have a relatively high carbon intensity (CI), and impose sustainability challenges. There is a need for a diversified approach to reduce costs and utilize more sustainable feedstocks effectively. Here, we map out catalytic synthesis routes to convert furanics derived from the (hemi)cellulosic biomass to alkanes and cycloalkanes using automated network generation with RING and semiempirical thermochemistry calculations. We find >100 energy-dense C-C alkane and cycloalkane SAF candidates over 300 synthesis routes; the top three are 2-methyl heptane, ethyl cyclohexane, and propyl cyclohexane, although these are relatively short. The shortest, least endothermic process chemistry involves C-C coupling, oxygen removal, and hydrogen addition, with dehydracyclization of the heterocyclic oxygens in the furan ring being the most endothermic step. The global warming potential due to hydrogen use and byproduct CO is typically 0.7-1 kg CO/kg SAF product; the least CO emitting routes entail making larger molecules with fewer ketonization, hydrogenation, and hydrodeoxygenation steps. The large number of SAF candidates highlights the rich potential of furanics as a source of SAF molecules. However, the structural dissimilarity between reactants and target products precludes pathways with fewer than six synthetic steps, thus necessitating intensified processes, integrating multiple reaction steps in multifunctional catalytic reactors.

摘要

可持续航空燃料(SAF)的生产可以显著减少航空业的碳足迹。目前从乙醇和脂肪酸大量生产SAF的途径成本高昂,碳强度(CI)相对较高,并带来可持续性挑战。需要一种多样化的方法来降低成本并有效利用更可持续的原料。在此,我们通过使用RING自动网络生成和半经验热化学计算,规划了将源自(半)纤维素生物质的呋喃类化合物转化为烷烃和环烷烃的催化合成路线。我们在300多条合成路线中发现了100多种能量密集型的碳 - 碳烷烃和环烷烃SAF候选物;排名前三的是2 - 甲基庚烷、乙基环己烷和丙基环己烷,不过这些相对较短。最短、吸热最少的工艺化学过程包括碳 - 碳偶联、脱氧和加氢,呋喃环中杂环氧的脱水环化是吸热最多的步骤。由于使用氢气和副产物一氧化碳导致的全球变暖潜能通常为0.7 - 1千克二氧化碳/千克SAF产品;排放一氧化碳最少的路线需要通过较少的酮化、氢化和加氢脱氧步骤来制备更大的分子。大量的SAF候选物凸显了呋喃类化合物作为SAF分子来源的丰富潜力。然而,反应物和目标产物之间的结构差异使得少于六个合成步骤的途径无法实现,因此需要强化工艺,将多个反应步骤整合到多功能催化反应器中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a931/11351710/d714575cc341/sc4c04199_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验