Suppr超能文献

打造可持续的天空:揭示实现碳排放循环的航空电子燃料生产支柱。

Forging a sustainable sky: Unveiling the pillars of aviation e-fuel production for carbon emission circularity.

作者信息

Ozkan Mihrimah, Narappa Anvaya B, Namboodiri Thrayesh, Chai Yijian, Babu Matheshwaran, Jennings Joan S E, Gao Yingfan, Tasneem Sameeha, Lam Jason, Talluri Kamal R, Shang Ruoxu, Ozkan Cengiz S, Watkins Jordyn M

机构信息

Department of Electrical and Computer Engineering, University of California, Riverside, Riverside, CA, USA.

Materials Science and Engineering Program, University of California, Riverside, Riverside, CA, USA.

出版信息

iScience. 2024 Feb 22;27(3):109154. doi: 10.1016/j.isci.2024.109154. eCollection 2024 Mar 15.

Abstract

In 2021, airplanes consumed nearly 250 million tons of fuel, equivalent to almost 10.75 exajoules. Anticipated growth in air travel suggests increasing fuel consumption. In January 2022, demand surged by 82.3%, as per the International Air Transport Association. In tackling aviation emissions, governments promote synthetic e-fuels to cut carbon. Sustainable aviation fuel (SAF) production increased from 1.9 million to 15.8 million gallons in six years. Although cost of kerosene produced with carbon dioxide from direct air capture (DAC) is several times higher than the cost of conventional jet fuel, its projected production cost is expected to decrease from $104-$124/MWh in 2030 to $60-$69/MWh in 2050. Advances in DAC technology, decreasing cost of renewable electricity, and improvements in FT technology are reasons to believe that the cost of e-kerosene will decline. This review describes major e-kerosene synthesis methods, incorporating DAC, hydrogen from water electrolysis, and hydrocarbon synthesis via the Fischer-Tropsch process. The importance of integrating e-fuel production with renewable energy sources and sustainable feedstock utilization cannot be overstated in achieving carbon emission circularity. The paper explores the concept of power-to-liquid (PtL) pathways, where renewable energy is used to convert renewable feedstocks into e-fuels. In addition to these technological improvements, carbon pricing, government subsidies, and public procurement are several policy initiatives that could help to reduce the cost of e-kerosene. Our review provides a comprehensive guide to the production pathways, technological advancements, and carbon emission circularity aspects of aviation e-fuels. It will provide a valuable resource for researchers, policymakers, industry stakeholders, and the general public interested in transitioning to a sustainable aviation industry.

摘要

2021年,飞机消耗了近2.5亿吨燃料,相当于近10.75艾焦。航空旅行的预期增长表明燃料消耗将不断增加。根据国际航空运输协会的数据,2022年1月,需求激增了82.3%。在应对航空排放方面,各国政府推广合成电子燃料以减少碳排放。可持续航空燃料(SAF)的产量在六年内从190万加仑增加到1580万加仑。尽管通过直接空气捕获(DAC)产生的二氧化碳生产的煤油成本比传统喷气燃料的成本高出几倍,但其预计生产成本有望从2030年的104 - 124美元/兆瓦时降至2050年的60 - 69美元/兆瓦时。DAC技术的进步、可再生电力成本的降低以及费托技术的改进,让人们有理由相信电子煤油的成本将会下降。本综述描述了主要的电子煤油合成方法,包括DAC、水电解制氢以及通过费托工艺进行的烃类合成。在实现碳排放循环方面,将电子燃料生产与可再生能源和可持续原料利用相结合的重要性再怎么强调也不为过。本文探讨了“电力到液体”(PtL)途径的概念,即利用可再生能源将可再生原料转化为电子燃料。除了这些技术改进外,碳定价、政府补贴和公共采购是有助于降低电子煤油成本的几项政策举措。我们的综述为航空电子燃料的生产途径、技术进步和碳排放循环方面提供了全面的指南。它将为有兴趣向可持续航空业转型的研究人员、政策制定者、行业利益相关者和公众提供宝贵的资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c23/10960063/8c5eecfbc57e/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验