Suppr超能文献

在基层医疗中对香港中文非实验室风险模型和评分算法进行预测糖尿病前期和糖尿病病例发现的外部验证。

External validation of the Hong Kong Chinese non-laboratory risk models and scoring algorithm for case finding of prediabetes and diabetes mellitus in primary care.

机构信息

Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.

Department of Family Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.

出版信息

J Diabetes Investig. 2024 Sep;15(9):1317-1325. doi: 10.1111/jdi.14256. Epub 2024 Jun 21.

Abstract

AIMS/INTRODUCTION: Two Hong Kong Chinese non-laboratory-based prediabetes/diabetes mellitus (pre-DM/DM) risk models were developed using logistic regression (LR) and machine learning, respectively. We aimed to evaluate the models' validity in case finding of pre-DM/DM in a Chinese primary care (PC) population. We also evaluated the validity of a risk-scoring algorithm derived from the LR model.

MATERIALS AND METHODS

This was a cross-sectional external validation study on Chinese adults, without a prior DM diagnosis, who were recruited from public/private PC clinics in Hong Kong. A total of 1,237 participants completed a questionnaire on the models' predictors. Of that, 919 underwent blood glucose testing. The primary outcome was the models' and the algorithm's sensitivity in finding pre-DM/DM cases. The secondary outcomes were the models' and the algorithm's specificity, positive/negative predictive values, discrimination and calibration.

RESULTS

The models' sensitivity were 0.70 (machine learning) and 0.72 (LR). Both showed good external discrimination (area under the receiver operating characteristic curve: machine learning 0.744, LR 0.739). The risks estimated by the models were lower than the observed incidence, indicating poor calibration. Both models were more effective among participants with lower pretest probabilities; that is, age 18-44 years. The algorithm's sensitivity was 0.77 at the cut-off score of ≥16 out of 41.

CONCLUSION

This study showed the validity of the models and the algorithm for finding pre-DM/DM cases in a Chinese PC population in Hong Kong. They can facilitate more cost-effective identification of high-risk individuals for blood testing to diagnose pre-DM/DM in PC. Further studies should recalibrate the models for more precise risk estimation in PC populations.

摘要

目的/引言:两项香港中文非实验室基于的糖尿病前期/糖尿病(pre-DM/DM)风险模型分别使用逻辑回归(LR)和机器学习建立。我们旨在评估这些模型在香港中文基层医疗(PC)人群中对 pre-DM/DM 病例发现的有效性。我们还评估了从 LR 模型衍生的风险评分算法的有效性。

材料和方法

这是一项针对无糖尿病既往史的中国成年人的横断面外部验证研究,他们从香港的公立/私立 PC 诊所招募。共有 1237 名参与者完成了模型预测因素的问卷调查。其中,919 名参与者进行了血糖检测。主要结果是模型和算法发现 pre-DM/DM 病例的敏感性。次要结果是模型和算法的特异性、阳性/阴性预测值、区分度和校准度。

结果

模型的敏感性分别为 0.70(机器学习)和 0.72(LR)。两者均显示出良好的外部区分度(接受者操作特征曲线下面积:机器学习 0.744,LR 0.739)。模型估计的风险低于观察到的发生率,表明校准不良。两个模型在预测概率较低的参与者中更有效,即 18-44 岁。算法的敏感性为 0.77,在得分≥41 分中的 16 分的截断值处。

结论

本研究表明,这些模型和算法在香港中文 PC 人群中对 pre-DM/DM 病例的发现具有有效性。它们可以促进更具成本效益的识别高危人群进行血液检测,以在 PC 中诊断 pre-DM/DM。进一步的研究应该为 PC 人群更精确的风险估计重新校准模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e868/11363091/47f17ac2b028/JDI-15-1317-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验