Suppr超能文献

预测表示:智能的基石。

Predictive Representations: Building Blocks of Intelligence.

机构信息

Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard University, Cambridge, MA 02134, U.S.A.

Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02134, U.S.A.

出版信息

Neural Comput. 2024 Oct 11;36(11):2225-2298. doi: 10.1162/neco_a_01705.

Abstract

Adaptive behavior often requires predicting future events. The theory of reinforcement learning prescribes what kinds of predictive representations are useful and how to compute them. This review integrates these theoretical ideas with work on cognition and neuroscience. We pay special attention to the successor representation and its generalizations, which have been widely applied as both engineering tools and models of brain function. This convergence suggests that particular kinds of predictive representations may function as versatile building blocks of intelligence.

摘要

适应行为通常需要预测未来事件。强化学习理论规定了哪些预测表示是有用的,以及如何计算它们。本综述将这些理论思想与认知和神经科学的研究结合起来。我们特别关注后继表示及其推广,它们已被广泛应用于工程工具和大脑功能模型。这种趋同表明,某些特定类型的预测表示可能是智能的多功能构建块。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验