Suppr超能文献

使用混合极限梯度提升模型评估土壤回弹模量

Assessment of resilient modulus of soil using hybrid extreme gradient boosting models.

作者信息

Duan Xiangfeng

机构信息

Imperial College London, London, UK.

出版信息

Sci Rep. 2024 Dec 30;14(1):31706. doi: 10.1038/s41598-024-81311-3.

Abstract

Accurate estimation of the soil resilient modulus (M) is essential for designing and monitoring pavements. However, experimental methods tend to be time-consuming and costly; regression equations and constitutive models usually have limited applications, while the predictive accuracy of some machine learning studies still has room for improvement. To forecast M efficiently and accurately, a new model named black-winged kite algorithm-extreme gradient boosting (BKA-XGBOOST) is proposed. In BKA-XGBOOST, XGBOOST captures the many-to-one nonlinear relationship between geotechnical factors and M, while BKA provides the optimal hyperparameters for XGBOOST. By combining them, XGBOOST has stable and accurate predictive capabilities for different combinations of soil data. Comparisons with nine models show that the proposed model outperforms other models in terms of M prediction accuracy, with a determination coefficient (R) of 0.995 and a mean absolute error (MAE) of 0.975 MPa. In addition, an efficient M prediction software is developed based on the model to improve its practicality and interactivity, which is promising for assisting engineers in evaluating pavement properties.

摘要

准确估算土壤回弹模量(M)对于路面设计和监测至关重要。然而,实验方法往往耗时且成本高昂;回归方程和本构模型的应用通常有限,而一些机器学习研究的预测精度仍有提升空间。为了高效准确地预测M,提出了一种名为黑翅鸢算法-极限梯度提升(BKA-XGBOOST)的新模型。在BKA-XGBOOST中,XGBOOST捕捉岩土工程因素与M之间的多对一非线性关系,而BKA为XGBOOST提供最优超参数。通过将它们结合,XGBOOST对不同土壤数据组合具有稳定且准确的预测能力。与九个模型的比较表明,所提出的模型在M预测精度方面优于其他模型,决定系数(R)为0.995,平均绝对误差(MAE)为0.975MPa。此外,基于该模型开发了一个高效的M预测软件,以提高其实用性和交互性,这有望协助工程师评估路面性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c946/11685465/56b72e7a65f9/41598_2024_81311_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验