Liu Siyuan, Yap Pew-Thian
Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Commun Eng. 2024;3. doi: 10.1038/s44172-023-00140-w. Epub 2024 Jan 5.
Harmonization improves Magn. Reson. Imaging (MRI) data consistency and is central to effective integration of diverse imaging data acquired across multiple sites. Recent deep learning techniques for harmonization are predominantly supervised in nature and hence require imaging data of the same human subjects to be acquired at multiple sites. Data collection as such requires the human subjects to travel across sites and is hence challenging, costly, and impractical, more so when sufficient sample size is needed for reliable network training. Here we show how harmonization can be achieved with a deep neural network that does not rely on traveling human phantom data. Our method disentangles site-specific appearance information and site-invariant anatomical information from images acquired at multiple sites and then employs the disentangled information to generate the image of each subject for any target site. We demonstrate with more than 6,000 multi-site T1- and T2-weighted images that our method is remarkably effective in generating images with realistic site-specific appearances without altering anatomical details. Our method allows retrospective harmonization of data in a wide range of existing modern large-scale imaging studies, conducted via different scanners and protocols, without additional data collection.
标准化可提高磁共振成像(MRI)数据的一致性,对于有效整合在多个站点采集的不同成像数据至关重要。最近用于标准化的深度学习技术本质上主要是有监督的,因此需要在多个站点采集同一人类受试者的成像数据。这样的数据收集要求人类受试者在不同站点之间往返,因此具有挑战性、成本高昂且不切实际,当需要足够的样本量进行可靠的网络训练时更是如此。在此,我们展示了如何使用不依赖于人类体模往返数据的深度神经网络来实现标准化。我们的方法从在多个站点采集的图像中分离出特定站点的外观信息和站点不变的解剖信息,然后利用分离出的信息为任何目标站点生成每个受试者的图像。我们用6000多张多站点T1加权和T2加权图像证明,我们的方法在生成具有逼真的特定站点外观且不改变解剖细节的图像方面非常有效。我们的方法允许在广泛的现有现代大规模成像研究中对数据进行回顾性标准化,这些研究通过不同的扫描仪和协议进行,无需额外的数据收集。