Suppr超能文献

基于两阶段分解的可解释深度学习方法阐明和预测悬浮颗粒物中的有机氯农药。

Elucidating and forecasting the organochlorine pesticides in suspended particulate matter by a two-stage decomposition based interpretable deep learning approach.

机构信息

The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Hohai University, 210098, Nanjing, China.

School of Environment and Energy, South China University of Technology, 510006, Guangzhou, China.

出版信息

Water Res. 2024 Nov 15;266:122315. doi: 10.1016/j.watres.2024.122315. Epub 2024 Aug 23.

Abstract

Accurately predicting the concentration of organochlorine pesticides (OCPs) presents a challenge due to their complex sources and environmental behaviors. In this study, we introduced a novel and advanced model that combined the power of three distinct techniques: Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), Variational Mode Decomposition (VMD), and a deep learning network of Long Short-Term Memory (LSTM). The objective is to characterize the variation in OCPs concentrations with high precision. Results show that the hybrid two-stage decomposition coupled models achieved an average symmetric mean absolute percentage error (SMAPE) of 23.24 % in the empirical analysis of typical surface water. It exhibited higher predictive power than the given individual benchmark models, which yielded an average SMAPE of 40.88 %, and single decomposition coupled models with an average SMAPE of 29.80 %. The proposed CEEMDAN-VMD-LSTM model, with an average SMAPE of 13.55 %, consistently outperformed the other models, yielding an average SMAPE of 33.53 %. A comparative analysis with shallow neural network methods demonstrated the advantages of the LSTM algorithm when coupled with secondary decomposition techniques for processing time series datasets. Furthermore, the interpretable analysis derived by the SHAP approach revealed that precipitation followed by the total phosphorus had strong effects on the predicted concentration of OCPs in the given water. The data presented herein shows the effectiveness of decomposition technique-based deep learning algorithms in capturing the dynamic characteristics of pollutants in surface water.

摘要

准确预测有机氯农药 (OCPs) 的浓度具有挑战性,因为它们的来源和环境行为复杂。在这项研究中,我们引入了一种新颖而先进的模型,该模型结合了三种不同技术的优势:完全集合经验模态分解与自适应噪声 (CEEMDAN)、变分模态分解 (VMD) 和长短期记忆 (LSTM) 的深度学习网络。其目的是高精度地描述 OCPs 浓度的变化。结果表明,混合两阶段分解耦合模型在典型地表水的实证分析中达到了平均对称平均绝对百分比误差 (SMAPE) 为 23.24%。它比给定的单个基准模型具有更高的预测能力,平均 SMAPE 为 40.88%,单个分解耦合模型的平均 SMAPE 为 29.80%。所提出的 CEEMDAN-VMD-LSTM 模型,平均 SMAPE 为 13.55%,始终优于其他模型,平均 SMAPE 为 33.53%。与浅层神经网络方法的比较分析表明,当与二次分解技术结合使用时,LSTM 算法在处理时间序列数据集方面具有优势。此外,通过 SHAP 方法得出的可解释性分析表明,降水紧随总磷之后,对所给水中 OCPs 预测浓度有强烈影响。本文提供的数据表明,基于分解技术的深度学习算法在捕捉地表水污染物动态特征方面的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验