Shiraz Institute for Stem Cell and Regenerative Medicine, Shiraz University of Medical Science, Shiraz, Iran.
Department of Genetics, Faculty of Biological Sciences and Technology, Shahid Ashrafi Esfahani University, Isfahan, Iran.
J Cell Mol Med. 2024 Sep;28(17):e70040. doi: 10.1111/jcmm.70040.
Bone tissue engineering addresses the limitations of autologous resources and the risk of allograft disease transmission in bone diseases. In this regard, engineered three-dimensional (3D) models emerge as biomimetic alternatives to natural tissues, replicating intracellular communication. Moreover, the unique properties of super-paramagnetic iron oxide nanoparticles (SPIONs) were shown to promote bone regeneration via enhanced osteogenesis and angiogenesis in bone models. This study aimed to investigate the effects of SPION on both osteogenesis and angiogenesis and characterized a co-culture of Human umbilical vein endothelial cells (HUVEC) and MG-63 cells as a model of bone microtissue. HUVECs: MG-63s with a ratio of 4:1 demonstrated the best results among other cell ratios, and 50 μg/mL of SPION was the optimum concentration for maximum survival, cell migration and mineralization. In addition, the data from gene expression illustrated that the expression of osteogenesis-related genes, including osteopontin, osteocalcin, alkaline phosphatase, and collagen-I, as well as the expression of the angiogenesis-related marker, CD-31, and the tube formation, is significantly elevated when the 50 μg/mL concentration of SPION is applied to the microtissue samples. SPION application in a designed 3D bone microtissue model involving a co-culture of osteoblast and endothelial cells resulted in increased expression of specific markers related to angiogenesis and osteogenesis. This includes the design of a novel biomimetic model to boost blood compatibility and biocompatibility of primary materials while promoting osteogenic activity in microtissue bone models. Moreover, this can improve interaction with surrounding tissues and broaden the knowledge to promote superior-performance implants, preventing device failure.
骨组织工程解决了自体资源的局限性和同种异体疾病传播的风险在骨疾病。在这方面,工程三维(3D)模型作为仿生替代物出现天然组织,复制细胞内通讯。此外,超顺磁性氧化铁纳米粒子(SPIONs)的独特特性被证明可以通过增强成骨和血管生成在骨模型中促进骨再生。本研究旨在研究 SPION 对成骨和血管生成的影响,并将人脐静脉内皮细胞(HUVEC)和 MG-63 细胞共培养作为骨微组织模型。HUVEC:MG-63 细胞的比例为 4:1 在其他细胞比例中表现出最佳结果,50μg/ml 的 SPION 是最佳浓度,可获得最大存活率、细胞迁移和矿化。此外,基因表达数据表明,当应用 50μg/ml 的 SPION 浓度时,骨形成相关基因的表达,包括骨桥蛋白、骨钙素、碱性磷酸酶和胶原蛋白-I,以及血管生成相关标志物 CD-31 的表达和管形成显著升高。将 SPION 应用于涉及成骨细胞和内皮细胞共培养的设计 3D 骨微组织模型中,导致与血管生成和成骨相关的特定标志物的表达增加。这包括设计一种新的仿生模型,以提高主要材料的血液相容性和生物相容性,同时促进微组织骨模型中的成骨活性。此外,这可以改善与周围组织的相互作用,并拓宽知识,以促进高性能植入物,防止设备故障。