Jordan Christina, Hayashi Taiki, Löbbert Arnelle, Fan Jingran, Teschers Charlotte S, Siebold Kathrin, Aufiero Marialuisa, Pape Felix, Campbell Emma, Axer Alexander, Bussmann Kathrin, Bergander Klaus, Köhnke Jesko, Gossert Alvar D, Gilmour Ryan
Institute for Organic Chemistry, University of Münster, 48149 Münster, Germany.
Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.
ACS Cent Sci. 2024 Jul 12;10(8):1481-1489. doi: 10.1021/acscentsci.4c00622. eCollection 2024 Aug 28.
Carbohydrates regulate an inimitable spectrum of biological functions, yet successfully leveraging this therapeutic avenue continues to be frustrated by low affinities with glycan-specific proteins. A conspicuous exception is the interaction of monosialotetrahexosylganglioside (GM1) with the carbohydrate-recognition domain of cholera toxin from : this is one of the strongest protein-carbohydrate interactions known. To establish the importance of a long-discussed key hydrogen bond between C2 of the terminal galactose of GM1 and the B subunit pentamer of cholera toxin (CTB), the total synthesis of a selectively fluorinated GM1 epitope was conducted in 19 steps. This process of molecular editing (OH → F) strategically deletes the hydrogen bond donor while retaining the localized partial charge of the substituent. Comparison of the binding affinity of F-GM1/CTB with native GM1, the GM1 carbohydrate epitope, and -mononitrophenyl-α-galactoside (MNPG) revealed a trend that fully supports the importance of this key interaction. These NMR data suggest that F-GM1 binds in a closely similar conformation as native GM1. Crystallographic analyses of the complex also confirm that the OH → F bioisosteric exchange at C2 of the terminal galactose induces a ring conformation that eliminates key hydrogen bonds: these interactions are compensated for by inter- and intramolecular fluorine-specific interactions.
碳水化合物调节着一系列独特的生物学功能,然而,由于与聚糖特异性蛋白的亲和力较低,成功利用这一治疗途径仍然面临挫折。一个明显的例外是单唾液酸四己糖神经节苷脂(GM1)与霍乱毒素的碳水化合物识别结构域之间的相互作用:这是已知最强的蛋白质 - 碳水化合物相互作用之一。为了确定GM1末端半乳糖的C2与霍乱毒素B亚基五聚体(CTB)之间长期讨论的关键氢键的重要性,通过19步反应完成了选择性氟化GM1表位的全合成。这种分子编辑过程(OH → F)在保留取代基局部部分电荷的同时,战略性地删除了氢键供体。F - GM1/CTB与天然GM1、GM1碳水化合物表位以及对 - 单硝基苯基 - α - 半乳糖苷(MNPG)结合亲和力的比较揭示了一种趋势,充分支持了这种关键相互作用的重要性。这些核磁共振数据表明,F - GM1以与天然GM1非常相似的构象结合。该复合物的晶体学分析也证实,末端半乳糖C2处的OH → F生物电子等排体交换诱导了一种消除关键氢键的环构象:这些相互作用由分子间和分子内的氟特异性相互作用补偿。