Suppr超能文献

表达新冠病毒受体结合域蛋白的流感病毒株可使K18-hACE2小鼠产生免疫力。

Influenza virus strains expressing SARS-CoV-2 receptor binding domain protein confer immunity in K18-hACE2 mice.

作者信息

Rader Nathaniel A, Lee Katherine S, Loes Andrea N, Miller-Stump Olivia A, Cooper Melissa, Wong Ting Y, Boehm Dylan T, Barbier Mariette, Bevere Justin R, Heath Damron F

机构信息

Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, WV, USA.

Vaccine Development Center at West Virginia University Health Sciences Center, Morgantown, WV, USA.

出版信息

Vaccine X. 2024 Aug 3;20:100543. doi: 10.1016/j.jvacx.2024.100543. eCollection 2024 Oct.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease (COVID-19), rapidly spread across the globe in 2019. With the emergence of the Omicron variant, COVID-19 shifted into an endemic phase. Given the anticipated rise in cases during the fall and winter seasons, the strategy of implementing seasonal booster vaccines for COVID-19 is becoming increasingly valuable to protect public health. This practice already exists for seasonal influenza vaccines to combat annual influenza seasons. Our goal was to investigate an easily modifiable vaccine platform for seasonal use against SARS-CoV-2. In this study, we evaluated the genetically modified influenza virus ΔNA(RBD) as an intranasal vaccine candidate for COVID-19. This modified virus was engineered to replace the coding sequence for the neuraminidase (NA) protein with a membrane-anchored form of the receptor binding domain (RBD) protein of SARS-CoV-2. We designed experiments to assess the protection of ΔNA(RBD) in K18-hACE2 mice using lethal (Delta) and non-lethal (Omicron) challenge models. Controls of COVID-19 mRNA vaccine and our lab's previously described intranasal virus like particle vaccine were used as comparisons. Immunization with ΔNA(RBD) expressing ancestral RBD elicited high anti-RBD IgG levels in the serum of mice, high anti-RBD IgA in lung tissue, and improved survival after Delta variant challenge. Modifying ΔNA(RBD) to express Omicron variant RBD shifted variant-specific antibody responses and limited viral burden in the lungs of mice after Omicron variant challenge. Overall, this data suggests that ΔNA(RBD) could be an effective intranasal vaccine platform that generates mucosal and systemic immunity towards SARS-CoV-2.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是冠状病毒病(COVID-19)的病原体,于2019年在全球迅速传播。随着奥密克戎变种的出现,COVID-19进入了地方流行阶段。鉴于秋冬季节病例预计会增加,实施COVID-19季节性加强疫苗的策略对于保护公众健康变得越来越有价值。这种做法在季节性流感疫苗应对年度流感季节时已经存在。我们的目标是研究一种易于修改的季节性使用的针对SARS-CoV-2的疫苗平台。在本研究中,我们评估了基因改造的流感病毒ΔNA(RBD)作为COVID-19的鼻内疫苗候选物。这种改造后的病毒被设计成用SARS-CoV-2受体结合域(RBD)蛋白的膜锚定形式取代神经氨酸酶(NA)蛋白的编码序列。我们设计实验,使用致死性(德尔塔)和非致死性(奥密克戎)攻击模型评估ΔNA(RBD)在K18-hACE2小鼠中的保护作用。将COVID-19 mRNA疫苗和我们实验室之前描述的鼻内病毒样颗粒疫苗作为对照进行比较。用表达原始RBD的ΔNA(RBD)免疫可在小鼠血清中引发高抗RBD IgG水平,在肺组织中引发高抗RBD IgA,并提高在德尔塔变种攻击后的存活率。将ΔNA(RBD)改造为表达奥密克戎变种RBD可改变变种特异性抗体反应,并限制奥密克戎变种攻击后小鼠肺部的病毒载量。总体而言,这些数据表明ΔNA(RBD)可能是一种有效的鼻内疫苗平台,可产生针对SARS-CoV-2的黏膜和全身免疫。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47d9/11364132/8e6828aa089f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验