Suppr超能文献

GenSelfDiff-HIS:利用扩散进行组织病理学图像分割的生成式自监督方法

GenSelfDiff-HIS: Generative Self-Supervision Using Diffusion for Histopathological Image Segmentation.

作者信息

Purma Vishnuvardhan, Srinath Suhas, Srirangarajan Seshan, Kakkar Aanchal, Prathosh A P

出版信息

IEEE Trans Med Imaging. 2025 Feb;44(2):618-631. doi: 10.1109/TMI.2024.3453492. Epub 2025 Feb 4.

Abstract

Histopathological image segmentation is a laborious and time-intensive task, often requiring analysis from experienced pathologists for accurate examinations. To reduce this burden, supervised machine-learning approaches have been adopted using large-scale annotated datasets for histopathological image analysis. However, in several scenarios, the availability of large-scale annotated data is a bottleneck while training such models. Self-supervised learning (SSL) is an alternative paradigm that provides some respite by constructing models utilizing only the unannotated data which is often abundant. The basic idea of SSL is to train a network to perform one or many pseudo or pretext tasks on unannotated data and use it subsequently as the basis for a variety of downstream tasks. It is seen that the success of SSL depends critically on the considered pretext task. While there have been many efforts in designing pretext tasks for classification problems, there have not been many attempts on SSL for histopathological image segmentation. Motivated by this, we propose an SSL approach for segmenting histopathological images via generative diffusion models. Our method is based on the observation that diffusion models effectively solve an image-to-image translation task akin to a segmentation task. Hence, we propose generative diffusion as the pretext task for histopathological image segmentation. We also utilize a multi-loss function-based fine-tuning for the downstream task. We validate our method using several metrics on two publicly available datasets along with a newly proposed head and neck (HN) cancer dataset containing Hematoxylin and Eosin (H&E) stained images along with annotations.

摘要

组织病理学图像分割是一项费力且耗时的任务,通常需要经验丰富的病理学家进行分析才能准确检查。为了减轻这一负担,人们采用了监督式机器学习方法,使用大规模带注释的数据集进行组织病理学图像分析。然而,在几种情况下,大规模带注释数据的可用性在训练此类模型时是一个瓶颈。自监督学习(SSL)是一种替代范式,它通过仅利用通常很丰富的未注释数据构建模型来提供一些缓解。SSL的基本思想是训练一个网络对未注释数据执行一个或多个伪任务或前置任务,并随后将其用作各种下游任务的基础。可以看出,SSL的成功关键取决于所考虑的前置任务。虽然在为分类问题设计前置任务方面已经做出了很多努力,但在用于组织病理学图像分割的SSL方面却没有太多尝试。受此启发,我们提出了一种通过生成扩散模型对组织病理学图像进行分割的SSL方法。我们的方法基于这样的观察,即扩散模型有效地解决了类似于分割任务的图像到图像的转换任务。因此,我们提出生成扩散作为组织病理学图像分割的前置任务。我们还对下游任务使用基于多损失函数的微调。我们使用几个指标在两个公开可用的数据集以及一个新提出的包含苏木精和伊红(H&E)染色图像及注释的头颈(HN)癌数据集上验证了我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验