Suppr超能文献

高质量的专家标注可提高人工智能模型在骨肿瘤 X 射线诊断中的准确率。

High-quality expert annotations enhance artificial intelligence model accuracy for osteosarcoma X-ray diagnosis.

机构信息

Department of Medical Information and Assistive Technology Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.

出版信息

Cancer Sci. 2024 Nov;115(11):3695-3704. doi: 10.1111/cas.16330. Epub 2024 Sep 2.

Abstract

Primary malignant bone tumors, such as osteosarcoma, significantly affect the pediatric and young adult populations, necessitating early diagnosis for effective treatment. This study developed a high-performance artificial intelligence (AI) model to detect osteosarcoma from X-ray images using highly accurate annotated data to improve diagnostic accuracy at initial consultations. Traditional models trained on unannotated data have shown limited success, with sensitivities of approximately 60%-70%. In contrast, our model used a data-centric approach with annotations from an experienced oncologist, achieving a sensitivity of 95.52%, specificity of 96.21%, and an area under the curve of 0.989. The model was trained using 468 X-ray images from 31 osteosarcoma cases and 378 normal knee images with a strategy to maximize diversity in the training and validation sets. It was evaluated using an independent dataset of 268 osteosarcoma and 554 normal knee images to ensure generalizability. By applying the U-net architecture and advanced image processing techniques such as renormalization and affine transformations, our AI model outperforms existing models, reducing missed diagnoses and enhancing patient outcomes by facilitating earlier treatment. This study highlights the importance of high-quality training data and advocates a shift towards data-centric AI development in medical imaging. These insights can be extended to other rare cancers and diseases, underscoring the potential of AI in transforming diagnostic processes in oncology. The integration of this AI model into clinical workflows could support physicians in early osteosarcoma detection, thereby improving diagnostic accuracy and patient care.

摘要

原发性骨恶性肿瘤,如骨肉瘤,对儿童和青年人群有重大影响,需要早期诊断以进行有效治疗。本研究开发了一种高性能人工智能(AI)模型,使用高度准确的注释数据从 X 射线图像中检测骨肉瘤,以提高初始咨询时的诊断准确性。使用未经注释的数据训练的传统模型已经显示出有限的成功,其敏感性约为 60%-70%。相比之下,我们的模型使用了一种数据中心方法,具有经验丰富的肿瘤学家的注释,其敏感性为 95.52%,特异性为 96.21%,曲线下面积为 0.989。该模型使用来自 31 例骨肉瘤病例和 378 例正常膝关节图像的 468 张 X 射线图像进行训练,采用了一种在训练和验证集中最大限度提高多样性的策略。它使用了 268 例骨肉瘤和 554 例正常膝关节图像的独立数据集进行评估,以确保其通用性。通过应用 U-net 架构和先进的图像处理技术,如重新归一化和仿射变换,我们的 AI 模型优于现有模型,减少了漏诊,并通过促进早期治疗来改善患者的预后。本研究强调了高质量训练数据的重要性,并倡导在医学成像中转向以数据为中心的 AI 开发。这些见解可以扩展到其他罕见癌症和疾病,突出了 AI 在改变肿瘤学诊断过程中的潜力。将这个 AI 模型集成到临床工作流程中可以帮助医生早期发现骨肉瘤,从而提高诊断准确性和患者护理水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ab0/11531945/d1cfec3fae80/CAS-115-3695-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验