Suppr超能文献

从振动光谱预测气味:一种数据驱动的方法。

Predicting odor from vibrational spectra: a data-driven approach.

作者信息

Ameta Durgesh, Behera Laxmidhar, Chakraborty Aniruddha, Sandhan Tushar

机构信息

Indian Knowledge System and Mental Health Applications Centre, Indian Institute of Technology, Mandi, 175005, India.

Indian Knowledge System Centre, ISS, Delhi, 110065, India.

出版信息

Sci Rep. 2024 Sep 2;14(1):20321. doi: 10.1038/s41598-024-70696-w.

Abstract

This study investigates olfaction, a complex and not well-understood sensory modality. The chemical mechanism behind smell can be described by so far proposed two theories: vibrational and docking theories. The vibrational theory has been gaining acceptance lately but needs more extensive validation. To fill this gap for the first time, we, with the help of data-driven classification, clustering, and Explainable AI techniques, systematically analyze a large dataset of vibrational spectra (VS) of 3018 molecules obtained from the atomistic simulation. The study utlizes image representations of VS using Gramian Angular Fields and Markov Transition Fields, allowing computer vision techniques to be applied for better feature extraction and improved odor classification. Furthermore, we fuse the PCA-reduced fingerprint features with image features, which show additional improvement in classification results. We use two clustering methods, agglomerative hierarchical (AHC) and k-means, on dimensionality reduced (UMAP, MDS, t-SNE, and PCA) VS and image features, which shed further insight into the connections between molecular structure, VS, and odor. Additionally, we contrast our method with an earlier work that employed traditional machine learning on fingerprint features for the same dataset, and demonstrate that even with a representative subset of 3018 molecules, our deep learning model outperforms previous results. This comprehensive and systematic analysis highlights the potential of deep learning in furthering the field of olfactory research while confirming the vibrational theory of olfaction.

摘要

本研究调查嗅觉,这是一种复杂且尚未被充分理解的感觉模态。目前提出的两种理论可以描述嗅觉背后的化学机制:振动理论和对接理论。振动理论最近越来越被接受,但需要更广泛的验证。为首次填补这一空白,我们借助数据驱动的分类、聚类和可解释人工智能技术,系统地分析了从原子模拟获得的3018个分子的振动光谱(VS)大型数据集。该研究利用格拉姆角场和马尔可夫转移场对VS进行图像表示,从而能够应用计算机视觉技术进行更好的特征提取和改进气味分类。此外,我们将主成分分析(PCA)降维后的指纹特征与图像特征融合,这在分类结果上显示出进一步的改进。我们在降维后的(UMAP、MDS、t-SNE和PCA)VS和图像特征上使用两种聚类方法,凝聚层次聚类(AHC)和k均值聚类,这进一步深入了解了分子结构、VS和气味之间的联系。此外,我们将我们的方法与早期一项针对同一数据集在指纹特征上采用传统机器学习的工作进行对比,并证明即使对于3018个分子的代表性子集,我们的深度学习模型也优于先前的结果。这种全面而系统的分析突出了深度学习在推进嗅觉研究领域方面的潜力,同时证实了嗅觉的振动理论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f548/11369114/ce6cebc95e22/41598_2024_70696_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验