Suppr超能文献

应用 12 种机器学习算法和非负矩阵分解进行狼疮肾炎的稳健预测。

Applying 12 machine learning algorithms and Non-negative Matrix Factorization for robust prediction of lupus nephritis.

机构信息

Department of Rheumatology and Immunology, Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.

MetaLife Lab, Shenzhen Institute of Translational Medicine, Shenzhen, Guangdong, China.

出版信息

Front Immunol. 2024 Aug 19;15:1391218. doi: 10.3389/fimmu.2024.1391218. eCollection 2024.

Abstract

Lupus nephritis (LN) is a challenging condition with limited diagnostic and treatment options. In this study, we applied 12 distinct machine learning algorithms along with Non-negative Matrix Factorization (NMF) to analyze single-cell datasets from kidney biopsies, aiming to provide a comprehensive profile of LN. Through this analysis, we identified various immune cell populations and their roles in LN progression and constructed 102 machine learning-based immune-related gene (IRG) predictive models. The most effective models demonstrated high predictive accuracy, evidenced by Area Under the Curve (AUC) values, and were further validated in external cohorts. These models highlight six hub IRGs (, , , , , and ) as key diagnostic markers for LN, showing remarkable diagnostic performance in both renal and peripheral blood cohorts, thus offering a novel approach for noninvasive LN diagnosis. Further clinical correlation analysis revealed that expressions of , and were negatively correlated with the glomerular filtration rate (GFR), while also positively correlated with proteinuria and serum creatinine levels, highlighting their roles in LN pathophysiology. Additionally, protein-protein interaction (PPI) analysis revealed significant networks involving hub IRGs, emphasizing the importance of the interleukin family and chemokines in LN pathogenesis. This study highlights the potential of integrating advanced genomic tools and machine learning algorithms to improve diagnosis and personalize management of complex autoimmune diseases like LN.

摘要

狼疮性肾炎(LN)是一种具有挑战性的疾病,其诊断和治疗选择有限。在这项研究中,我们应用了 12 种不同的机器学习算法和非负矩阵分解(NMF)来分析肾脏活检的单细胞数据集,旨在为 LN 提供全面的概况。通过这项分析,我们确定了各种免疫细胞群及其在 LN 进展中的作用,并构建了 102 个基于机器学习的免疫相关基因(IRG)预测模型。最有效的模型表现出高预测准确性,证据是曲线下面积(AUC)值,并在外部队列中得到了进一步验证。这些模型突出了六个关键的 IRG(、、、、和)作为 LN 的诊断标志物,在肾和外周血队列中均表现出出色的诊断性能,为非侵入性 LN 诊断提供了新方法。进一步的临床相关性分析表明,和的表达与肾小球滤过率(GFR)呈负相关,而也与蛋白尿和血清肌酐水平呈正相关,突出了它们在 LN 病理生理学中的作用。此外,蛋白质-蛋白质相互作用(PPI)分析显示涉及关键 IRG 的重要网络,强调了白细胞介素家族和趋化因子在 LN 发病机制中的重要性。这项研究强调了整合先进的基因组工具和机器学习算法来改善复杂自身免疫性疾病(如 LN)的诊断和个性化管理的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/101a/11366613/6759423bdcac/fimmu-15-1391218-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验