Shan Xiangyi, Pan Yiyang, Cai Furong, Gao Han, Xu Jianan, Liu Daobin, Zhu Qing, Li Panpan, Jin Zhaoyu, Jiang Jun, Zhou Min
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China.
Nano Lett. 2024 Sep 18;24(37):11632-11640. doi: 10.1021/acs.nanolett.4c03208. Epub 2024 Sep 3.
High-entropy alloys (HEAs) present both significant potential and challenges for developing efficient electrocatalysts due to their diverse combinations and compositions. Here, we propose a procedural approach that combines high-throughput experimentation with data-driven strategies to accelerate the discovery of efficient HEA electrocatalysts for the hydrogen evolution reaction (HER). This enables the rapid preparation of HEA arrays with various element combinations and composition ratios within a model system. The intrinsic activity of the HEA arrays is swiftly screened using scanning electrochemical cell microscopy (SECCM), providing precise composition-activity data sets for the HEA system. An ensemble machine learning (EML) model is then used to predict the activity database for the composition subspace of the system. Based on these database results, two groups of promising catalysts are recommended and validated through actual electrocatalytic evaluations. This procedural approach, which combines high-throughput experimentation with data-driven strategies, provides a new pathway to accelerate the discovery of efficient HEA electrocatalysts.
由于其多样的组合和成分,高熵合金(HEA)在开发高效电催化剂方面既具有巨大潜力,也带来了挑战。在此,我们提出一种将高通量实验与数据驱动策略相结合的程序方法,以加速发现用于析氢反应(HER)的高效HEA电催化剂。这使得能够在模型系统中快速制备具有各种元素组合和组成比的HEA阵列。使用扫描电化学池显微镜(SECCM)快速筛选HEA阵列的本征活性,为HEA系统提供精确的组成-活性数据集。然后使用集成机器学习(EML)模型预测系统组成子空间的活性数据库。基于这些数据库结果,推荐了两组有前景的催化剂,并通过实际电催化评估进行了验证。这种将高通量实验与数据驱动策略相结合的程序方法,为加速发现高效HEA电催化剂提供了一条新途径。