Huang Yang, Wang Shih-Han, Wang Xiangrui, Omidvar Noushin, Achenie Luke E K, Skrabalak Sara E, Xin Hongliang
Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States.
Department of Chemistry, Indiana University - Bloomington, Bloomington, Indiana 47405, United States.
J Phys Chem C Nanomater Interfaces. 2024 Jun 29;128(27):11183-11189. doi: 10.1021/acs.jpcc.4c01630. eCollection 2024 Jul 11.
High-entropy alloys (HEAs), characterized as compositionally complex solid solutions with five or more metal elements, have emerged as a novel class of catalytic materials with unique attributes. Because of the remarkable diversity of multielement sites or site ensembles stabilized by configurational entropy, human exploration of the multidimensional design space of HEAs presents a formidable challenge, necessitating an efficient, computational and data-driven strategy over traditional trial-and-error experimentation or physics-based modeling. Leveraging deep learning interatomic potentials for large-scale molecular simulations and pretrained machine learning models of surface reactivity, our approach effectively rationalizes the enhanced activity of a previously synthesized PdCuPtNiCo HEA nanoparticle system for electrochemical oxygen reduction, as corroborated by experimental observations. We contend that this framework deepens our fundamental understanding of the surface reactivity of high-entropy materials and fosters the accelerated development and synthesis of monodisperse HEA nanoparticles as a versatile material platform for catalyzing sustainable chemical and energy transformations.
高熵合金(HEAs)是一种具有五种或更多金属元素的成分复杂的固溶体,已成为一类具有独特属性的新型催化材料。由于构型熵稳定的多元素位点或位点集合具有显著的多样性,人类对高熵合金多维设计空间的探索面临巨大挑战,这需要一种高效的、基于计算和数据驱动的策略,而不是传统的试错实验或基于物理的建模。利用深度学习原子间势进行大规模分子模拟以及表面反应性的预训练机器学习模型,我们的方法有效地解释了先前合成的PdCuPtNiCo高熵合金纳米颗粒系统对电化学氧还原增强活性的原因,实验观察结果也证实了这一点。我们认为,这个框架加深了我们对高熵材料表面反应性的基本理解,并促进了单分散高熵合金纳米颗粒的加速开发和合成,使其成为催化可持续化学和能量转换的通用材料平台。