Suppr超能文献

机器学习辅助发现用于氧还原反应的高效高熵合金催化剂。

Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction.

作者信息

Wan Xuhao, Zhang Zhaofu, Yu Wei, Niu Huan, Wang Xiting, Guo Yuzheng

机构信息

School of Electrical Engineering, Wuhan University, Wuhan, Hubei 430072, China.

The Institute of Technological Sciences, Wuhan University, Wuhan, Hubei 430072, China.

出版信息

Patterns (N Y). 2022 Aug 2;3(9):100553. doi: 10.1016/j.patter.2022.100553. eCollection 2022 Sep 9.

Abstract

High-entropy alloys (HEAs) have recently been applied in the field of heterogeneous catalysis benefiting from vast chemical space. However, huge chemical space also brings extreme challenges for the comprehensive study of HEAs by traditional trial-and-error experiments. Therefore, the machine learning (ML) method is presented to investigate the oxygen reduction reaction (ORR) catalytic activity of millions of reactive sites on HEA surfaces. The well-performed ML model is constructed based on the gradient boosting regression (GBR) algorithm with high accuracy, generalizability, and simplicity. In-depth analysis of the results demonstrates that adsorption energy is a mixture of the individual contributions of coordinated metal atoms near the reactive site. An efficient strategy is proposed to further boost the ORR catalytic activity of promising HEA catalysts by optimizing the HEA surface structure, which recommends a highly efficient HEA catalyst of IrPtRuRhAg. Our work offers a guide to the rational design and nanostructure synthesis of HEA catalysts.

摘要

高熵合金(HEAs)近来凭借其广阔的化学空间而被应用于多相催化领域。然而,巨大的化学空间也给通过传统的试错实验对高熵合金进行全面研究带来了极大挑战。因此,提出了机器学习(ML)方法来研究高熵合金表面数百万个反应位点的氧还原反应(ORR)催化活性。基于梯度提升回归(GBR)算法构建了性能良好的ML模型,该模型具有高精度、通用性和简单性。对结果的深入分析表明,吸附能是反应位点附近配位金属原子各自贡献的混合。通过优化高熵合金表面结构,提出了一种进一步提高有前景的高熵合金催化剂ORR催化活性的有效策略,该策略推荐了一种高效的IrPtRuRhAg高熵合金催化剂。我们的工作为高熵合金催化剂的合理设计和纳米结构合成提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00b9/9481945/780552520f17/fx1.jpg

相似文献

1
Machine-learning-assisted discovery of highly efficient high-entropy alloy catalysts for the oxygen reduction reaction.
Patterns (N Y). 2022 Aug 2;3(9):100553. doi: 10.1016/j.patter.2022.100553. eCollection 2022 Sep 9.
3
Accelerating the Discovery of Oxygen Reduction Electrocatalysts: High-Throughput Screening of Element Combinations in Pt-Based High-Entropy Alloys.
Angew Chem Int Ed Engl. 2024 Sep 9;63(37):e202407116. doi: 10.1002/anie.202407116. Epub 2024 Aug 9.
4
New Conceptual Catalyst on Spatial High-Entropy Alloy Heterostructures for High-Performance Li-O Batteries.
Small. 2023 Apr;19(15):e2206742. doi: 10.1002/smll.202206742. Epub 2023 Jan 8.
5
Optimization strategies of high-entropy alloys for electrocatalytic applications.
Chem Sci. 2023 Oct 19;14(45):12850-12868. doi: 10.1039/d3sc04962k. eCollection 2023 Nov 22.
6
Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO Hydrogenation to Methanol.
ACS Appl Mater Interfaces. 2021 Dec 1;13(47):56151-56163. doi: 10.1021/acsami.1c16696. Epub 2021 Nov 17.
7
Unraveling Reactivity Origin of Oxygen Reduction at High-Entropy Alloy Electrocatalysts with a Computational and Data-Driven Approach.
J Phys Chem C Nanomater Interfaces. 2024 Jun 29;128(27):11183-11189. doi: 10.1021/acs.jpcc.4c01630. eCollection 2024 Jul 11.
8
Design of high bulk moduli high entropy alloys using machine learning.
Sci Rep. 2023 Nov 22;13(1):20504. doi: 10.1038/s41598-023-47181-x.
10
Understanding Alkaline Hydrogen Oxidation Reaction on PdNiRuIrRh High-Entropy-Alloy by Machine Learning Potential.
Angew Chem Int Ed Engl. 2023 Jul 3;62(27):e202217976. doi: 10.1002/anie.202217976. Epub 2023 May 19.

引用本文的文献

本文引用的文献

1
Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis.
Nat Commun. 2021 Oct 29;12(1):6261. doi: 10.1038/s41467-021-26425-2.
2
Machine-Learning-Accelerated Catalytic Activity Predictions of Transition Metal Phthalocyanine Dual-Metal-Site Catalysts for CO Reduction.
J Phys Chem Lett. 2021 Jul 8;12(26):6111-6118. doi: 10.1021/acs.jpclett.1c01526. Epub 2021 Jun 25.
3
Quantum Chemistry in the Age of Machine Learning.
J Phys Chem Lett. 2020 Mar 19;11(6):2336-2347. doi: 10.1021/acs.jpclett.9b03664. Epub 2020 Mar 9.
5
QuantumATK: an integrated platform of electronic and atomic-scale modelling tools.
J Phys Condens Matter. 2020 Jan 1;32(1):015901. doi: 10.1088/1361-648X/ab4007. Epub 2019 Aug 30.
6
Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening.
J Phys Chem Lett. 2015 Sep 17;6(18):3528-33. doi: 10.1021/acs.jpclett.5b01660. Epub 2015 Aug 27.
8
Platinum-based oxygen reduction electrocatalysts.
Acc Chem Res. 2013 Aug 20;46(8):1848-57. doi: 10.1021/ar300359w. Epub 2013 Jun 28.
9
Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts.
J Am Chem Soc. 2001 Aug 29;123(34):8404-5. doi: 10.1021/ja010963d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验