Gholami Sina, Lim Jennifer I, Leng Theodore, Ong Sally Shin Yee, Thompson Atalie Carina, Alam Minhaj Nur
Department of Electrical Engineering, University of North Carolina at Charlotte, Charlotte, NC, United States.
Department of Ophthalmology and Visual Science, University of Illinois at Chicago, Chicago, IL, United States.
Front Med (Lausanne). 2023 Oct 12;10:1259017. doi: 10.3389/fmed.2023.1259017. eCollection 2023.
This paper presents a federated learning (FL) approach to train deep learning models for classifying age-related macular degeneration (AMD) using optical coherence tomography image data. We employ the use of residual network and vision transformer encoders for the normal vs. AMD binary classification, integrating four unique domain adaptation techniques to address domain shift issues caused by heterogeneous data distribution in different institutions. Experimental results indicate that FL strategies can achieve competitive performance similar to centralized models even though each local model has access to a portion of the training data. Notably, the Adaptive Personalization FL strategy stood out in our FL evaluations, consistently delivering high performance across all tests due to its additional local model. Furthermore, the study provides valuable insights into the efficacy of simpler architectures in image classification tasks, particularly in scenarios where data privacy and decentralization are critical using both encoders. It suggests future exploration into deeper models and other FL strategies for a more nuanced understanding of these models' performance. Data and code are available at https://github.com/QIAIUNCC/FL_UNCC_QIAI.
本文提出了一种联邦学习(FL)方法,用于使用光学相干断层扫描图像数据训练深度学习模型,以对年龄相关性黄斑变性(AMD)进行分类。我们采用残差网络和视觉Transformer编码器进行正常与AMD的二元分类,并集成了四种独特的域适应技术,以解决不同机构中异构数据分布导致的域偏移问题。实验结果表明,即使每个本地模型只能访问一部分训练数据,联邦学习策略也能实现与集中式模型相当的性能。值得注意的是,自适应个性化联邦学习策略在我们的联邦学习评估中表现突出,由于其额外的本地模型,在所有测试中始终表现出高性能。此外,该研究为更简单的架构在图像分类任务中的有效性提供了有价值的见解,特别是在数据隐私和去中心化至关重要的场景中,使用这两种编码器均是如此。它建议未来探索更深层次的模型和其他联邦学习策略,以更细致地了解这些模型的性能。数据和代码可在https://github.com/QIAIUNCC/FL_UNCC_QIAI获取。