Suppr超能文献

新冠疫情期间的睡眠:结合多传感器数据和问卷的纵向观察研究。

Sleep During the COVID-19 Pandemic: Longitudinal Observational Study Combining Multisensor Data With Questionnaires.

机构信息

Department of Computer Science, Aalto University, Espoo, Finland.

Informatics Department, University of California, Irvine, Irvine, CA, United States.

出版信息

JMIR Mhealth Uhealth. 2024 Sep 3;12:e53389. doi: 10.2196/53389.

Abstract

BACKGROUND

The COVID-19 pandemic prompted various containment strategies, such as work-from-home policies and reduced social contact, which significantly altered people's sleep routines. While previous studies have highlighted the negative impacts of these restrictions on sleep, they often lack a comprehensive perspective that considers other factors, such as seasonal variations and physical activity (PA), which can also influence sleep.

OBJECTIVE

This study aims to longitudinally examine the detailed changes in sleep patterns among working adults during the COVID-19 pandemic using a combination of repeated questionnaires and high-resolution passive measurements from wearable sensors. We investigate the association between sleep and 5 sets of variables: (1) demographics; (2) sleep-related habits; (3) PA behaviors; and external factors, including (4) pandemic-specific constraints and (5) seasonal variations during the study period.

METHODS

We recruited working adults in Finland for a 1-year study (June 2021-June 2022) conducted during the late stage of the COVID-19 pandemic. We collected multisensor data from fitness trackers worn by participants, as well as work and sleep-related measures through monthly questionnaires. Additionally, we used the Stringency Index for Finland at various points in time to estimate the degree of pandemic-related lockdown restrictions during the study period. We applied linear mixed models to examine changes in sleep patterns during this late stage of the pandemic and their association with the 5 sets of variables.

RESULTS

The sleep patterns of 27,350 nights from 112 working adults were analyzed. Stricter pandemic measures were associated with an increase in total sleep time (TST) (β=.003, 95% CI 0.001-0.005; P<.001) and a delay in midsleep (MS) (β=.02, 95% CI 0.02-0.03; P<.001). Individuals who tend to snooze exhibited greater variability in both TST (β=.15, 95% CI 0.05-0.27; P=.006) and MS (β=.17, 95% CI 0.03-0.31; P=.01). Occupational differences in sleep pattern were observed, with service staff experiencing longer TST (β=.37, 95% CI 0.14-0.61; P=.004) and lower variability in TST (β=-.15, 95% CI -0.27 to -0.05; P<.001). Engaging in PA later in the day was associated with longer TST (β=.03, 95% CI 0.02-0.04; P<.001) and less variability in TST (β=-.01, 95% CI -0.02 to 0.00; P=.02). Higher intradaily variability in rest activity rhythm was associated with shorter TST (β=-.26, 95% CI -0.29 to -0.23; P<.001), earlier MS (β=-.29, 95% CI -0.33 to -0.26; P<.001), and reduced variability in TST (β=-.16, 95% CI -0.23 to -0.09; P<.001).

CONCLUSIONS

Our study provided a comprehensive view of the factors affecting sleep patterns during the late stage of the pandemic. As we navigate the future of work after the pandemic, understanding how work arrangements, lifestyle choices, and sleep quality interact will be crucial for optimizing well-being and performance in the workforce.

摘要

背景

COVID-19 大流行促使人们采取了各种遏制策略,例如居家办公政策和减少社会接触,这极大地改变了人们的睡眠习惯。尽管之前的研究已经强调了这些限制对睡眠的负面影响,但它们往往缺乏一个全面的视角,没有考虑到其他因素,如季节性变化和体力活动(PA),这些因素也会影响睡眠。

目的

本研究旨在使用重复问卷调查和来自可穿戴传感器的高分辨率被动测量,从纵向角度检查 COVID-19 大流行期间工作成年人睡眠模式的详细变化。我们调查了睡眠与 5 组变量之间的关联:(1)人口统计学;(2)与睡眠相关的习惯;(3)PA 行为;以及外部因素,包括(4)大流行期间的特定限制和(5)研究期间的季节性变化。

方法

我们在芬兰招募了成年人参加为期一年的研究(2021 年 6 月至 2022 年 6 月),该研究在 COVID-19 大流行后期进行。我们从参与者佩戴的健身追踪器收集多传感器数据,并通过每月的问卷收集与工作和睡眠相关的测量数据。此外,我们还在不同时间使用芬兰的严格指数来估计研究期间与大流行相关的封锁限制程度。我们应用线性混合模型来检查大流行后期睡眠模式的变化及其与 5 组变量的关联。

结果

分析了 112 位工作成年人的 27350 个夜晚的睡眠模式。更严格的大流行措施与总睡眠时间(TST)的增加(β=0.003,95%置信区间 0.001-0.005;P<.001)和睡眠中期(MS)的延迟(β=0.02,95%置信区间 0.02-0.03;P<.001)有关。倾向于打盹的人在 TST(β=0.15,95%置信区间 0.05-0.27;P=.006)和 MS(β=0.17,95%置信区间 0.03-0.31;P=.01)方面的变异性更大。睡眠模式存在职业差异,服务人员的 TST 更长(β=0.37,95%置信区间 0.14-0.61;P=.004),TST 的变异性更低(β=-.15,95%置信区间 -0.27 至 -0.05;P<.001)。白天较晚进行 PA 与 TST 更长(β=0.03,95%置信区间 0.02-0.04;P<.001)和 TST 变异性更小(β=-.01,95%置信区间 -0.02 至 0.00;P=.02)有关。休息活动节律的日内变异性较高与 TST 较短(β=-.26,95%置信区间 -0.29 至 -0.23;P<.001)、MS 较早(β=-.29,95%置信区间 -0.33 至 -0.26;P<.001)以及 TST 变异性降低(β=-.16,95%置信区间 -0.23 至 -0.09;P<.001)有关。

结论

本研究提供了对大流行后期睡眠模式影响因素的全面了解。随着我们在大流行后探索未来的工作方式,了解工作安排、生活方式选择和睡眠质量之间的相互作用对于优化劳动力的幸福感和绩效至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3f6/11408889/7c99762ff680/mhealth_v12i1e53389_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验