Klos Antoine, Bailly Lucie, Rolland du Roscoat Sabine, Orgéas Laurent, Henrich Bernardoni Nathalie, Broche Ludovic, King Andrew
Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000, Grenoble, France.
Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000, Grenoble, France.
Sci Rep. 2024 Sep 3;14(1):20499. doi: 10.1038/s41598-024-68684-1.
Imaging the internal architecture of fast-vibrating structures at micrometer scale and kilohertz frequencies poses great challenges for numerous applications, including the study of biological oscillators, mechanical testing of materials, and process engineering. Over the past decade, X-ray microtomography with retrospective gating has shown very promising advances in meeting these challenges. However, breakthroughs are still expected in acquisition and reconstruction procedures to keep improving the spatiotemporal resolution, and study the mechanics of fast-vibrating multiscale structures. Thereby, this works aims to improve this imaging technique by minimising streaking and motion blur artefacts through the optimisation of experimental parameters. For that purpose, we have coupled a numerical approach relying on tomography simulation with vibrating particles with known and ideal 3D geometry (micro-spheres or fibres) with experimental campaigns. These were carried out on soft composites, imaged in synchrotron X-ray beamlines while oscillating up to 400 Hz, thanks to a custom-developed vibromechanical device. This approach yields homogeneous angular sampling of projections and gives reliable predictions of image quality degradation due to motion blur. By overcoming several technical and scientific barriers limiting the feasibility and reproducibility of such investigations, we provide guidelines to enhance gated-CT 4D imaging for the analysis of heterogeneous, high-frequency oscillating materials.
对微米尺度和千赫兹频率下快速振动结构的内部结构进行成像,对包括生物振荡器研究、材料力学测试和过程工程在内的众多应用构成了巨大挑战。在过去十年中,具有回顾性门控的X射线显微断层扫描在应对这些挑战方面已显示出非常有前景的进展。然而,在采集和重建程序方面仍有望取得突破,以不断提高时空分辨率,并研究快速振动的多尺度结构的力学。因此,这项工作旨在通过优化实验参数来减少条纹和运动模糊伪影,从而改进这种成像技术。为此,我们将一种基于断层扫描模拟的数值方法与具有已知和理想三维几何形状(微球或纤维)的振动颗粒相结合,并开展了实验活动。这些实验是在软复合材料上进行的,借助定制开发的振动机械设备,在同步加速器X射线束线中对其进行振荡高达400赫兹的成像。这种方法可实现投影的均匀角度采样,并能可靠地预测由于运动模糊导致的图像质量下降。通过克服限制此类研究可行性和可重复性的若干技术和科学障碍,我们提供了增强门控CT 4D成像的指导方针,用于分析异质高频振荡材料。