Suppr超能文献

深海探测:利用预先训练的深度学习模型对大堡礁深海遥控潜水器生物进行识别。

Deepdive: Leveraging Pre-trained Deep Learning for Deep-Sea ROV Biota Identification in the Great Barrier Reef.

机构信息

Geocoastal Research Group, School of Geosciences, University of Sydney, New South Wales, Australia.

ITTC ARC Centre for Data Analytics for Resources and Environment, Biomedical Building, University of Sydney, New South Wales, Australia.

出版信息

Sci Data. 2024 Sep 3;11(1):957. doi: 10.1038/s41597-024-03766-3.

Abstract

Understanding and preserving the deep sea ecosystems is paramount for marine conservation efforts. Automated object (deep-sea biota) classification can enable the creation of detailed habitat maps that not only aid in biodiversity assessments but also provide essential data to evaluate ecosystem health and resilience. Having a significant source of labelled data helps prevent overfitting and enables training deep learning models with numerous parameters. In this paper, we contribute to the establishment of a significant deep-sea remotely operated vehicle (ROV) image classification dataset with 3994 images featuring deep-sea biota belonging to 33 classes. We manually label the images through rigorous quality control with human-in-the-loop image labelling. Leveraging data from ROV equipped with advanced imaging systems, our study provides results using novel deep-learning models for image classification. We use deep learning models including ResNet, DenseNet, Inception, and Inception-ResNet to benchmark the dataset that features class imbalance with many classes. Our results show that the Inception-ResNet model provides a mean classification accuracy of 65%, with AUC scores exceeding 0.8 for each class.

摘要

理解和保护深海生态系统对于海洋保护工作至关重要。自动化物体(深海生物群)分类可以创建详细的栖息地地图,不仅有助于生物多样性评估,还提供了评估生态系统健康和弹性的重要数据。拥有大量标记数据有助于防止过拟合,并使具有大量参数的深度学习模型的训练成为可能。在本文中,我们通过手动标记图像,建立了一个具有重要意义的深海遥控潜水器(ROV)图像分类数据集,其中包含 3994 张深海生物图像,属于 33 个类别。我们通过人机交互图像标记进行严格的质量控制,确保图像质量。利用配备先进成像系统的 ROV 收集的数据,我们使用新的深度学习模型对图像进行分类,并提供了研究结果。我们使用包括 ResNet、DenseNet、Inception 和 Inception-ResNet 在内的深度学习模型对数据集进行基准测试,该数据集具有类不平衡和许多类别的特点。我们的结果表明,Inception-ResNet 模型的平均分类准确率为 65%,每个类别的 AUC 得分均超过 0.8。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a691/11372175/aa96b154dcc3/41597_2024_3766_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验