Suppr超能文献

人工智能平台在指导安全腹腔镜胆囊切除术方面的验证。

Validation of an artificial intelligence platform for the guidance of safe laparoscopic cholecystectomy.

机构信息

Surgical Artificial Intelligence Research Academy, University Health Network, Toronto, ON, Canada.

Department of Surgery, University of Toronto, Toronto, ON, Canada.

出版信息

Surg Endosc. 2023 Mar;37(3):2260-2268. doi: 10.1007/s00464-022-09439-9. Epub 2022 Aug 2.

Abstract

BACKGROUND

Many surgical adverse events, such as bile duct injuries during laparoscopic cholecystectomy (LC), occur due to errors in visual perception and judgment. Artificial intelligence (AI) can potentially improve the quality and safety of surgery, such as through real-time intraoperative decision support. GoNoGoNet is a novel AI model capable of identifying safe ("Go") and dangerous ("No-Go") zones of dissection on surgical videos of LC. Yet, it is unknown how GoNoGoNet performs in comparison to expert surgeons. This study aims to evaluate the GoNoGoNet's ability to identify Go and No-Go zones compared to an external panel of expert surgeons.

METHODS

A panel of high-volume surgeons from the SAGES Safe Cholecystectomy Task Force was recruited to draw free-hand annotations on frames of prospectively collected videos of LC to identify the Go and No-Go zones. Expert consensus on the location of Go and No-Go zones was established using Visual Concordance Test pixel agreement. Identification of Go and No-Go zones by GoNoGoNet was compared to expert-derived consensus using mean F1 Dice Score, and pixel accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV).

RESULTS

A total of 47 frames from 25 LC videos, procured from 3 countries and 9 surgeons, were annotated simultaneously by an expert panel of 6 surgeons and GoNoGoNet. Mean (± standard deviation) F1 Dice score were 0.58 (0.22) and 0.80 (0.12) for Go and No-Go zones, respectively. Mean (± standard deviation) accuracy, sensitivity, specificity, PPV and NPV for the Go zones were 0.92 (0.05), 0.52 (0.24), 0.97 (0.03), 0.70 (0.21), and 0.94 (0.04) respectively. For No-Go zones, these metrics were 0.92 (0.05), 0.80 (0.17), 0.95 (0.04), 0.84 (0.13) and 0.95 (0.05), respectively.

CONCLUSIONS

AI can be used to identify safe and dangerous zones of dissection within the surgical field, with high specificity/PPV for Go zones and high sensitivity/NPV for No-Go zones. Overall, model prediction was better for No-Go zones compared to Go zones. This technology may eventually be used to provide real-time guidance and minimize the risk of adverse events.

摘要

背景

许多外科手术不良事件,如腹腔镜胆囊切除术 (LC) 中的胆管损伤,都是由于视觉感知和判断错误导致的。人工智能 (AI) 可以潜在地提高手术质量和安全性,例如通过实时术中决策支持。GoNoGoNet 是一种新型 AI 模型,能够识别 LC 手术视频中的安全(“Go”)和危险(“No-Go”)解剖区域。然而,目前尚不清楚 GoNoGoNet 与专家外科医生相比表现如何。本研究旨在评估 GoNoGoNet 识别 Go 和 No-Go 区域的能力,并与外部专家外科医生小组进行比较。

方法

从 SAGES 安全胆囊切除术工作组中招募了一组高容量外科医生,以在前瞻性收集的 LC 视频的帧上进行自由手注释,以识别 Go 和 No-Go 区域。使用视觉一致性测试像素一致性,通过共识测试建立 Go 和 No-Go 区域的专家共识。使用平均 F1 Dice 评分和像素准确性、敏感性、特异性、阳性预测值 (PPV) 和阴性预测值 (NPV),比较 GoNoGoNet 识别的 Go 和 No-Go 区域与专家共识。

结果

共从 3 个国家的 9 名外科医生的 25 个 LC 视频中采集了 47 个帧,由 6 名外科医生的专家小组和 GoNoGoNet 同时进行注释。Go 和 No-Go 区域的平均(±标准偏差)F1 Dice 评分分别为 0.58(0.22)和 0.80(0.12)。Go 区域的平均(±标准偏差)准确性、敏感性、特异性、PPV 和 NPV 分别为 0.92(0.05)、0.52(0.24)、0.97(0.03)、0.70(0.21)和 0.94(0.04)。对于 No-Go 区域,这些指标分别为 0.92(0.05)、0.80(0.17)、0.95(0.04)、0.84(0.13)和 0.95(0.05)。

结论

人工智能可以用于识别手术区域内的安全和危险解剖区域,Go 区域具有高特异性/PPV,No-Go 区域具有高敏感性/NPV。总体而言,模型对 No-Go 区域的预测优于 Go 区域。该技术最终可能用于提供实时指导,最大限度地降低不良事件的风险。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验