Suppr超能文献

个性化 EEG 特征选择用于低复杂度的癫痫监测。

Personalized EEG Feature Selection for Low-Complexity Seizure Monitoring.

机构信息

Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson 75080, USA.

Department of Neurology and Neurotherapeutic, The University of Texas Southwestern Medical Center, Dallas 75230, USA.

出版信息

Int J Neural Syst. 2021 Aug;31(8):2150018. doi: 10.1142/S0129065721500180. Epub 2021 Mar 22.

Abstract

Approximately, one third of patients with epilepsy are refractory to medical therapy and thus can be at high risk of injuries and sudden unexpected death. A low-complexity electroencephalography (EEG)-based seizure monitoring algorithm is critically important for daily use, especially for wearable monitoring platforms. This paper presents a personalized EEG feature selection approach, which is the key to achieve a reliable seizure monitoring with a low computational cost. We advocate a two-step, personalized feature selection strategy to enhance monitoring performances for each patient. In the first step, linear discriminant analysis (LDA) is applied to find a few seizure-indicative channels. Then in the second step, least absolute shrinkage and selection operator (LASSO) method is employed to select a discriminative subset of both frequency and time domain features (spectral powers and entropy). A personalization strategy is further customized to find the best settings (number of channels and features) that yield the highest classification scores for each subject. Experimental results of analyzing 23 subjects in CHB-MIT database are quite promising. We have achieved an average F-1 score of 88% with excellent sensitivity and specificity using not more than 7 features extracted from at most 3 channels.

摘要

大约有三分之一的癫痫患者对药物治疗没有反应,因此他们面临着受伤和突发性死亡的高风险。对于日常使用,特别是对于可穿戴监测平台来说,一种低复杂度的基于脑电图(EEG)的癫痫监测算法至关重要。本文提出了一种个性化的脑电图特征选择方法,这是实现可靠的低计算成本癫痫监测的关键。我们提倡采用两步个性化特征选择策略,以增强每个患者的监测性能。在第一步中,应用线性判别分析(LDA)来找到几个具有癫痫指示意义的通道。然后,在第二步中,使用最小绝对值收缩和选择算子(LASSO)方法选择频域和时域特征(频谱功率和熵)的有区别的子集。进一步定制个性化策略,以找到为每个主体产生最高分类分数的最佳设置(通道和特征的数量)。使用不超过 3 个通道最多提取 7 个特征,对 CHB-MIT 数据库中的 23 个主体进行分析的实验结果非常有前景。我们实现了平均 F-1 分数为 88%,具有出色的灵敏度和特异性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验