Mckeating Samuel, Penrhyn-Lowe Oliver B, Flynn Sean, Cassin Savannah R, Lomas Sarah, Fidge Christopher, Price Paul, Wright Stephen, Chambon Pierre, Rannard Steve P
Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63, 3JW, UK.
Commun Chem. 2024 Sep 4;7(1):197. doi: 10.1038/s42004-024-01283-3.
With the ever-growing reliance on polymeric materials for numerous applications, new avenues to induce, design and control degradation are clearly important. Here, we describe a previously unreported approach to controlling enzymatic hydrolysis of high molecular weight branched polymers formed from the new free-radical polymer synthesis strategy transfer-dominated branching radical telomerisation (TBRT). Modifying the chemical nature of TBRT polymers may be accomplished through telogen selection and multi-vinyl taxogen (MVT) design, and we show telogen-driven control of enzyme-catalysed hydrolysis and the impact of careful placement of hydrolytically susceptible groups within readily synthesised MVTs. Our results indicate that utilising conventional free-radical chemistries and unsaturated monomers as feedstocks for highly branched polymer architectures has considerable potential for the design of future materials that degrade into very low molecular weight byproducts at variable and controllable rates.
随着众多应用对聚合物材料的依赖日益增加,开发诱导、设计和控制降解的新途径显然至关重要。在此,我们描述了一种此前未报道的方法,用于控制由新型自由基聚合物合成策略——转移主导的支化自由基端粒化(TBRT)形成的高分子量支化聚合物的酶促水解。通过端基选择和多乙烯基引发剂(MVT)设计可以改变TBRT聚合物的化学性质,并且我们展示了端基驱动的酶促水解控制以及在易于合成的MVT中精心放置水解敏感基团的影响。我们的结果表明,利用传统自由基化学和不饱和单体作为高度支化聚合物结构的原料,在设计未来可降解为极低分子量副产物且降解速率可变且可控的材料方面具有巨大潜力。