Alexandre Pâmela A, Rodríguez-Ramilo Silvia T, Mach Núria, Reverter Antonio
CSIRO MOSH-Future Science Platform, St Lucia, Queensland, Australia.
CSIRO Agriculture & Food, St Lucia, Queensland, Australia.
J Anim Breed Genet. 2025 Mar;142(2):237-250. doi: 10.1111/jbg.12899. Epub 2024 Sep 4.
Commercial livestock producers need to prioritize genetic progress for health and efficiency traits to address productivity, welfare, and environmental concerns but face challenges due to limited pedigree information in extensive multi-sire breeding scenarios. Utilizing pooled DNA for genotyping and integrating seminal microbiome information into genomic models could enhance predictions of male fertility traits, thus addressing complexities in reproductive performance and inbreeding effects. Using the Angus Australia database comprising genotypes and pedigree data for 78,555 animals, we simulated percentage of normal sperm (PNS) and prolificacy of sires, resulting in 713 sires and 27,557 progeny in the final dataset. Publicly available microbiome data from 45 bulls was used to simulate data for the 713 sires. By incorporating both genomic and microbiome information our models were able to explain a larger proportion of phenotypic variation in both PNS (0.94) and prolificacy (0.56) compared to models using a single data source (e.g., 0.36 and 0.41, respectively, using only genomic information). Additionally, models containing both genomic and microbiome data revealed larger phenotypic differences between animals in the top and bottom quartile of predictions, indicating potential for improved productivity and sustainability in livestock farming systems. Inbreeding depression was observed to affect fertility traits, which makes the incorporation of microbiome information on the prediction of fertility traits even more actionable. Crucially, our inferences demonstrate the potential of the semen microbiome to contribute to the improvement of fertility traits in cattle and pave the way for the development of targeted microbiome interventions to improve reproductive performance in livestock.
商业家畜养殖者需要将健康和效率性状的遗传进展作为优先事项,以应对生产力、福利和环境方面的问题,但在广泛的多父本繁殖场景中,由于系谱信息有限,他们面临着挑战。利用混合DNA进行基因分型,并将精液微生物组信息整合到基因组模型中,可以提高对雄性生育性状的预测,从而解决繁殖性能和近亲繁殖效应方面的复杂性。利用澳大利亚安格斯数据库,该数据库包含78555只动物的基因型和系谱数据,我们模拟了正常精子百分比(PNS)和种公牛的繁殖力,最终数据集中有713头种公牛和27557头后代。来自45头公牛的公开可用微生物组数据被用于为这713头种公牛模拟数据。通过整合基因组和微生物组信息,我们的模型能够解释PNS(0.94)和繁殖力(0.56)中比使用单一数据源的模型更大比例的表型变异(例如,仅使用基因组信息时分别为0.36和0.41)。此外,包含基因组和微生物组数据的模型显示,在预测的前四分位数和后四分位数的动物之间存在更大的表型差异,这表明在畜牧养殖系统中提高生产力和可持续性的潜力。观察到近亲繁殖衰退会影响生育性状,这使得将微生物组信息纳入生育性状预测变得更加可行。至关重要的是,我们的推断证明了精液微生物组有助于改善牛的生育性状的潜力,并为开发针对性的微生物组干预措施以提高家畜繁殖性能铺平了道路。