Suppr超能文献

基于池数据的单步基因组最佳线性无偏预测框架的基因组预测。

Genomic prediction using pooled data in a single-step genomic best linear unbiased prediction framework.

机构信息

Department of Animal Science, University of Nebraska, Lincoln, NE.

Department of Statistics, University of Nebraska, Lincoln, NE.

出版信息

J Anim Sci. 2020 Jun 1;98(6). doi: 10.1093/jas/skaa184.

Abstract

Economically relevant traits are routinely collected within the commercial segments of the beef industry but are rarely included in genetic evaluations because of unknown pedigrees. Individual relationships could be resurrected with genomics, but this would be costly; therefore, pooling DNA and phenotypic data provide a cost-effective solution. Pedigree, phenotypic, and genomic data were simulated for a beef cattle population consisting of 15 generations. Genotypes mimicked a 50k marker panel (841 quantitative trait loci were located across the genome, approximately once per 3 Mb) and the phenotype was moderately heritable. Individuals from generation 15 were included in pools (observed genotype and phenotype were mean values of a group). Estimated breeding values (EBV) were generated from a single-step genomic best linear unbiased prediction model. The effects of pooling strategy (random and minimizing or uniformly maximizing phenotypic variation within pools), pool size (1, 2, 10, 20, 50, 100, or no data from generation 15), and generational gaps of genotyping on EBV accuracy (correlation of EBV with true breeding values) were quantified. Greatest EBV accuracies of sires and dams were observed when there was no gap between genotyped parents and pooled offspring. The EBV accuracies resulting from pools were usually greater than no data from generation 15 regardless of sire or dam genotyping. Minimizing phenotypic variation increased EBV accuracy by 8% and 9% over random pooling and uniformly maximizing phenotypic variation, respectively. A pool size of 2 was the only scenario that did not significantly decrease EBV accuracy compared with individual data when pools were formed randomly or by uniformly maximizing phenotypic variation (P > 0.05). Pool sizes of 2, 10, 20, or 50 did not generally lead to statistical differences in EBV accuracy than individual data when pools were constructed to minimize phenotypic variation (P > 0.05). Largest numerical increases in EBV accuracy resulting from pooling compared with no data from generation 15 were seen with sires with prior low EBV accuracy (those born in generation 14). Pooling of any size led to larger EBV accuracies of the pools than individual data when minimizing phenotypic variation. Resulting EBV for the pools could be used to inform management decisions of those pools. Pooled genotyping to garner commercial-level phenotypes for genetic evaluations seems plausible although differences exist depending on pool size and pool formation strategy.

摘要

经济相关性状通常在牛肉行业的商业部分中进行常规收集,但由于谱系未知,很少纳入遗传评估。通过基因组学可以恢复个体关系,但这将是昂贵的;因此,汇集 DNA 和表型数据提供了一种具有成本效益的解决方案。对由 15 个世代组成的肉牛种群进行了谱系、表型和基因组数据模拟。基因型模拟了一个 50k 标记面板(基因组上有 841 个数量性状位点,大约每 3 Mb 就有一个),表型具有中度遗传力。第 15 代的个体被纳入组中(观察到的基因型和表型是一组的平均值)。从单步基因组最佳线性无偏预测模型生成了估计育种值( EBV )。量化了汇集策略(随机和最小化或均匀最大化组内表型变异)、组大小(1、2、10、20、50、100,或没有第 15 代的数据)以及基因分型世代差距对 EBV 准确性( EBV 与真实育种值的相关性)的影响。当基因分型父母与汇集后代之间没有差距时,观察到 sire 和 dam 的 EBV 准确性最高。无论 sire 或 dam 是否进行基因分型,从组中获得的 EBV 准确性通常都大于没有第 15 代的数据。最小化表型变异将 EBV 准确性分别提高了 8%和 9%,而随机汇集和均匀最大化表型变异分别提高了 8%和 9%。当随机或均匀最大化表型变异形成组时,组大小为 2 是唯一一种与个体数据相比没有显著降低 EBV 准确性的方案(P > 0.05)。当形成组以最小化表型变异性时,2、10、20 或 50 的组大小通常不会导致 EBV 准确性与个体数据产生统计学差异(P > 0.05)。与没有第 15 代数据相比,通过汇集获得的 EBV 准确性的最大数值增加出现在 sire 具有先前低 EBV 准确性(那些出生在第 14 代)的情况下。无论组的大小如何,当最小化表型变异性时,组的 EBV 准确性都大于个体数据。当最小化表型变异性时,用于组的 EBV 可用于通知这些组的管理决策。通过汇集获得商业水平的表型进行遗传评估似乎是可行的,尽管根据组的大小和组形成策略存在差异。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验