Suppr超能文献

结合近端和遥感技术评估“卡拉蒂纳”橄榄树的水分状况。

Combining proximal and remote sensing to assess 'Calatina' olive water status.

作者信息

Carella Alessandro, Massenti Roberto, Marra Francesco Paolo, Catania Pietro, Roma Eliseo, Lo Bianco Riccardo

机构信息

Department of Agricultural, Food and Forest Sciences (SAAF), University of Palermo, Palermo, Italy.

出版信息

Front Plant Sci. 2024 Aug 20;15:1448656. doi: 10.3389/fpls.2024.1448656. eCollection 2024.

Abstract

Developing an efficient and sustainable precision irrigation strategy is crucial in contemporary agriculture. This study aimed to combine proximal and remote sensing techniques to show the benefits of using both monitoring methods, simultaneously assessing the water status and response of 'Calatina' olive under two distinct irrigation levels: full irrigation (FI), and drought stress (DS, -3 to -4 MPa). Stem water potential (Ψ) and stomatal conductance (g) were monitored weekly as reference indicators of plant water status. Crop water stress index (CWSI) and stomatal conductance index (Ig) were calculated through ground-based infrared thermography. Fruit gauges were used to monitor continuously fruit growth and data were converted in fruit daily weight fluctuations (ΔW) and relative growth rate (RGR). Normalized difference vegetation index (NDVI), normalized difference RedEdge index (NDRE), green normalized difference vegetation index (GNDVI), chlorophyll vegetation index (CVI), modified soil-adjusted vegetation index (MSAVI), water index (WI), normalized difference greenness index (NDGI) and green index (GI) were calculated from data collected by UAV-mounted multispectral camera. Data obtained from proximal sensing were correlated with both Ψ and g, while remote sensing data were correlated only with Ψ. Regression analysis showed that both CWSI and Ig proved to be reliable indicators of Ψ and g. Of the two fruit growth parameters, ΔW exhibited a stronger relationship, primarily with Ψ. Finally, NDVI, GNDVI, WI and NDRE emerged as the vegetation indices that correlated most strongly with Ψ, achieving high R values. Combining proximal and remote sensing indices suggested two valid approaches: a more simplified one involving the use of CWSI and either NDVI or WI, and a more comprehensive one involving CWSI and ΔW as proximal indices, along with WI as a multispectral index. Further studies on combining proximal and remote sensing data will be necessary in order to find strategic combinations of sensors and establish intervention thresholds.

摘要

制定高效且可持续的精准灌溉策略在当代农业中至关重要。本研究旨在结合近端和遥感技术,以展示同时使用这两种监测方法的益处,同时评估“卡拉蒂纳”橄榄在两种不同灌溉水平下的水分状况和响应:充分灌溉(FI)和干旱胁迫(DS,-3至-4 MPa)。每周监测茎水势(Ψ)和气孔导度(g)作为植物水分状况的参考指标。通过地面红外热成像计算作物水分胁迫指数(CWSI)和气孔导度指数(Ig)。使用果实测量仪连续监测果实生长,并将数据转换为果实日重量波动(ΔW)和相对生长速率(RGR)。根据无人机搭载的多光谱相机收集的数据计算归一化差异植被指数(NDVI)、归一化差异红边指数(NDRE)、绿色归一化差异植被指数(GNDVI)、叶绿素植被指数(CVI)、改良土壤调节植被指数(MSAVI)、水分指数(WI)、归一化差异绿度指数(NDGI)和绿色指数(GI)。从近端传感获得的数据与Ψ和g均相关,而遥感数据仅与Ψ相关。回归分析表明,CWSI和Ig均被证明是Ψ和g的可靠指标。在两个果实生长参数中,ΔW表现出更强的关系,主要与Ψ相关。最后,NDVI、GNDVI、WI和NDRE成为与Ψ相关性最强的植被指数,获得了较高的R值。结合近端和遥感指数提出了两种有效的方法:一种更简化的方法是使用CWSI以及NDVI或WI,另一种更全面的方法是将CWSI和ΔW作为近端指数,同时将WI作为多光谱指数。为了找到传感器的战略组合并建立干预阈值,有必要进一步研究结合近端和遥感数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c2/11368777/70f9f3f0800e/fpls-15-1448656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验