Suppr超能文献

用于基因网络动力学特定上下文表示的量化多任务学习。

Quantized multi-task learning for context-specific representations of gene network dynamics.

作者信息

Chen Han, Venkatesh Madhavan S, Ortega Javier Gómez, Mahesh Siddharth V, Nandi Tarak N, Madduri Ravi K, Pelka Karin, Theodoris Christina V

机构信息

Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.

Gladstone-University of California, San Francisco (UCSF) Institute of Genomic Immunology, San Francisco, CA, USA.

出版信息

bioRxiv. 2024 Aug 19:2024.08.16.608180. doi: 10.1101/2024.08.16.608180.

Abstract

While often represented as static entities, gene networks are highly context-dependent. Here, we developed a multi-task learning strategy to yield context-specific representations of gene network dynamics. We assembled a corpus comprising ~103 million human single-cell transcriptomes from a broad range of tissues and diseases and performed a two stage pretraining, first with non-malignant cells to generate a foundational model and then with continual learning on cancer cells to tune the model to the cancer domain. We performed multi-task learning with the foundational model to learn context-specific representations of a broad range of cell types, tissues, developmental stages, and diseases. We then leveraged the cancer-tuned model to jointly learn cell states and predict tumor-restricting factors within the colorectal tumor microenvironment. Model quantization allowed resource-efficient fine-tuning and inference while preserving biological knowledge. Overall, multi-task learning enables context-specific disease modeling that can yield contextual predictions of candidate therapeutic targets for human disease.

摘要

虽然基因网络通常被视为静态实体,但它们高度依赖于上下文。在此,我们开发了一种多任务学习策略,以生成基因网络动态的上下文特定表示。我们收集了一个包含来自广泛组织和疾病的约1.03亿个人类单细胞转录组的语料库,并进行了两阶段预训练,首先对非恶性细胞进行预训练以生成基础模型,然后对癌细胞进行持续学习,将模型调整到癌症领域。我们使用基础模型进行多任务学习,以学习广泛细胞类型、组织、发育阶段和疾病的上下文特定表示。然后,我们利用经过癌症调整的模型来联合学习细胞状态,并预测结直肠癌微环境中的肿瘤限制因子。模型量化允许在保留生物学知识的同时进行资源高效的微调与推理。总体而言,多任务学习能够实现上下文特定的疾病建模,从而对人类疾病的候选治疗靶点进行上下文预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ba50/11370383/33a47ba7f446/nihpp-2024.08.16.608180v1-f0005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验