Suppr超能文献

评估哺乳动物皮质中细胞类型特异性增强子预测方法

Evaluating Methods for the Prediction of Cell Type-Specific Enhancers in the Mammalian Cortex.

作者信息

Johansen Nelson J, Kempynck Niklas, Zemke Nathan R, Somasundaram Saroja, De Winter Seppe, Hooper Marcus, Dwivedi Deepanjali, Lohia Ruchi, Wehbe Fabien, Li Bocheng, Abaffyová Darina, Armand Ethan J, De Man Julie, Eksi Eren Can, Hecker Nikolai, Hulselmans Gert, Konstantakos Vasilis, Mauduit David, Mich John K, Partel Gabriele, Daigle Tanya L, Levi Boaz P, Zhang Kai, Tanaka Yoshiaki, Gillis Jesse, Ting Jonathan T, Ben-Simon Yoav, Miller Jeremy, Ecker Joseph R, Ren Bing, Aerts Stein, Lein Ed S, Tasic Bosiljka, Bakken Trygve E

机构信息

Allen Institute for Brain Science, Seattle, WA 98109.

These authors contributed equally.

出版信息

bioRxiv. 2025 Mar 25:2024.08.21.609075. doi: 10.1101/2024.08.21.609075.

Abstract

Identifying cell type-specific enhancers in the brain is critical to building genetic tools for investigating the mammalian brain. Computational methods for functional enhancer prediction have been proposed and validated in the fruit fly and not yet the mammalian brain. We organized the 'Brain Initiative Cell Census Network (BICCN) Challenge: Predicting Functional Cell Type-Specific Enhancers from Cross-Species Multi-Omics' to assess machine learning and feature-based methods designed to nominate enhancer DNA sequences to target cell types in the mouse cortex. Methods were evaluated based on validation data from hundreds of cortical cell type-specific enhancers that were previously packaged into individual AAV vectors and retro-orbitally injected into mice. We find that open chromatin was a key predictor of functional enhancers, and sequence models improved prediction of non-functional enhancers that can be deprioritized as opposed to pursued for testing. Sequence models also identified cell type-specific transcription factor codes that can guide designs of enhancers. This community challenge establishes a benchmark for enhancer prioritization algorithms and reveals computational approaches and molecular information that are crucial for identifying functional enhancers in mammalian cortical cell types. The results of this challenge bring us closer to understanding the complex gene regulatory landscape of the mammalian cortex and to designing more efficient genetic tools to target cortical cell types.

摘要

识别大脑中细胞类型特异性增强子对于构建用于研究哺乳动物大脑的遗传工具至关重要。功能增强子预测的计算方法已在果蝇中提出并得到验证,但尚未在哺乳动物大脑中得到验证。我们组织了“大脑计划细胞普查网络(BICCN)挑战赛:从跨物种多组学预测功能细胞类型特异性增强子”,以评估旨在将增强子DNA序列指定到小鼠皮质靶细胞类型的机器学习和基于特征的方法。基于数百个皮质细胞类型特异性增强子的验证数据对方法进行评估,这些增强子先前被包装成单个腺相关病毒(AAV)载体并通过眶后注射到小鼠体内。我们发现开放染色质是功能增强子的关键预测因子,序列模型改进了对非功能增强子的预测,与寻求测试的增强子相比,非功能增强子可以被降优先级。序列模型还确定了可指导增强子设计的细胞类型特异性转录因子代码。这项社区挑战赛为增强子优先级排序算法建立了一个基准,并揭示了对于识别哺乳动物皮质细胞类型中的功能增强子至关重要的计算方法和分子信息。挑战赛的结果使我们更接近理解哺乳动物皮质复杂的基因调控格局,并设计出更有效的遗传工具来靶向皮质细胞类型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/29b2/11967665/96cc50ff563d/nihpp-2024.08.21.609075v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验