Hecker Nikolai, Kempynck Niklas, Mauduit David, Abaffyová Darina, Vandepoel Roel, Dieltiens Sam, Borm Lars, Sarropoulos Ioannis, González-Blas Carmen Bravo, De Man Julie, Davie Kristofer, Leysen Elke, Vandensteen Jeroen, Moors Rani, Hulselmans Gert, Lim Lynette, De Wit Joris, Christiaens Valerie, Poovathingal Suresh, Aerts Stein
Laboratory of Computational Biology, VIB Center for AI & Computational Biology, Leuven, Belgium.
VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
Science. 2025 Jan 2;387(6735):eadp3957. doi: 10.1126/science.adp3957. Epub 2025 Feb 14.
Combinations of transcription factors govern the identity of cell types, which is reflected by genomic enhancer codes. We used deep learning to characterize these enhancer codes and devised three metrics to compare cell types in the telencephalon across amniotes. To this end, we generated single-cell multiome and spatially resolved transcriptomics data of the chicken telencephalon. Enhancer codes of orthologous nonneuronal and γ-aminobutyric acid-mediated (GABAergic) cell types show a high degree of similarity across amniotes, whereas excitatory neurons of the mammalian neocortex and avian pallium exhibit varying degrees of similarity. Enhancer codes of avian mesopallial neurons are most similar to those of mammalian deep-layer neurons. With this study, we present generally applicable deep learning approaches to characterize and compare cell types on the basis of genomic regulatory sequences.
转录因子的组合决定了细胞类型的特性,这由基因组增强子编码反映出来。我们使用深度学习来表征这些增强子编码,并设计了三个指标来比较羊膜动物端脑的细胞类型。为此,我们生成了鸡端脑的单细胞多组学和空间分辨转录组学数据。直系非神经元和γ-氨基丁酸介导(GABA能)细胞类型的增强子编码在羊膜动物中显示出高度相似性,而哺乳动物新皮层和鸟类脑皮层的兴奋性神经元表现出不同程度的相似性。鸟类中脑皮层神经元的增强子编码与哺乳动物深层神经元的最为相似。通过这项研究,我们提出了普遍适用的深度学习方法,以基于基因组调控序列来表征和比较细胞类型。