Suppr超能文献

相间环挤压的物理化学

The physical chemistry of interphase loop extrusion.

作者信息

Tortora Maxime M C, Fudenberg Geoffrey

机构信息

Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, USA.

出版信息

bioRxiv. 2024 Aug 24:2024.08.23.609419. doi: 10.1101/2024.08.23.609419.

Abstract

Loop extrusion constitutes a universal mechanism of genome organization, whereby structural maintenance of chromosomes (SMC) protein complexes load onto the chromatin fiber and generate DNA loops of increasingly-larger sizes until their eventual release. In mammalian interphase cells, loop extrusion is mediated by the cohesin complex, which is dynamically regulated by the interchange of multiple accessory proteins. Although these regulators bind the core cohesin complex only transiently, their disruption can dramatically alter cohesin dynamics, gene expression, chromosome morphology and contact patterns. Still, a theory of how cohesin regulators and their molecular interplay with the core complex modulate genome folding remains at large. Here we derive a model of cohesin loop extrusion from first principles, based on measurements of the abundance and dynamics of cohesin regulators. We systematically evaluate potential chemical reaction networks that describe the association of cohesin with its regulators and with the chromatin fiber. Remarkably, experimental observations are consistent with only a single biochemical reaction cycle, which results in a unique minimal model that may be fully parameterized by quantitative protein measurements. We demonstrate how distinct roles for cohesin regulators emerge simply from the structure of the reaction network, and how their dynamic exchange can regulate loop extrusion kinetics over time-scales that far exceed their own chromatin residence times. By embedding our cohesin biochemical reaction network within biophysical chromatin simulations, we evidence how variations in regulatory protein abundance can alter chromatin architecture across multiple length- and time-scales. Predictions from our model are corroborated by biophysical and biochemical assays, optical microscopy observations, and Hi-C conformation capture techniques. More broadly, our theoretical and numerical framework bridges the gap between observations of extrusion motor dynamics at the molecular scale and their structural consequences at the genome-wide level.

摘要

环挤压构成了一种基因组组织的通用机制,通过这种机制,染色体结构维持(SMC)蛋白复合物加载到染色质纤维上,并生成尺寸越来越大的DNA环,直到它们最终释放。在哺乳动物间期细胞中,环挤压由黏连蛋白复合物介导,该复合物由多种辅助蛋白的交换动态调节。尽管这些调节因子仅短暂结合核心黏连蛋白复合物,但其破坏可显著改变黏连蛋白动态、基因表达、染色体形态和接触模式。然而,关于黏连蛋白调节因子及其与核心复合物的分子相互作用如何调节基因组折叠的理论仍未明确。在这里,我们基于对黏连蛋白调节因子丰度和动态的测量,从第一原理推导出黏连蛋白环挤压模型。我们系统地评估了描述黏连蛋白与其调节因子以及与染色质纤维结合的潜在化学反应网络。值得注意的是,实验观察结果仅与单个生化反应循环一致,这导致了一个独特的最小模型,该模型可以通过定量蛋白质测量进行完全参数化。我们展示了黏连蛋白调节因子的不同作用如何仅从反应网络的结构中产生,以及它们的动态交换如何在远远超过其自身染色质停留时间的时间尺度上调节环挤压动力学。通过将我们的黏连蛋白生化反应网络嵌入生物物理染色质模拟中,我们证明了调节蛋白丰度的变化如何在多个长度和时间尺度上改变染色质结构。我们模型的预测得到了生物物理和生化测定、光学显微镜观察以及Hi-C构象捕获技术的证实。更广泛地说,我们的理论和数值框架弥合了分子尺度上挤压马达动力学观察与其在全基因组水平上的结构后果之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfdf/11370536/a8d1cc556a2d/nihpp-2024.08.23.609419v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验