State Key Laboratory of Membrane Biology, School of Life Sciences, and Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.
Peking-Tsinghua Center for Life Sciences, The National Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing, China.
Genome Biol. 2023 Jun 28;24(1):155. doi: 10.1186/s13059-023-02982-1.
BACKGROUND: The ring-shaped cohesin complex is an important factor for the formation of chromatin loops and topologically associating domains (TADs) by loop extrusion. However, the regulation of association between cohesin and chromatin is poorly understood. In this study, we use super-resolution imaging to reveal the unique role of cohesin subunit RAD21 in cohesin loading and chromatin structure regulation. RESULTS: We directly visualize that up-regulation of RAD21 leads to excessive chromatin loop extrusion into a vermicelli-like morphology with RAD21 clustered into foci and excessively loaded cohesin bow-tying a TAD to form a beads-on-a-string-type pattern. In contrast, up-regulation of the other four cohesin subunits results in even distributions. Mechanistically, we identify that the essential role of RAD21 is attributed to the RAD21-loader interaction, which facilitates the cohesin loading process rather than increasing the abundance of cohesin complex upon up-regulation of RAD21. Furthermore, Hi-C and genomic analysis reveal how RAD21 up-regulation affects genome-wide higher-order chromatin structure. Accumulated contacts are shown at TAD corners while inter-TAD interactions increase after vermicelli formation. Importantly, we find that in breast cancer cells, the expression of RAD21 is aberrantly high with poor patient survival and RAD21 forms beads in the nucleus. Up-regulated RAD21 in HeLa cells leads to compartment switching and up-regulation of cancer-related genes. CONCLUSIONS: Our results provide key insights into the molecular mechanism by which RAD21 facilitates the cohesin loading process and provide an explanation to how cohesin and loader work cooperatively to promote chromatin extrusion, which has important implications in construction of three-dimensional genome organization.
背景:环形黏合蛋白复合体是通过环挤出形成染色质环和拓扑关联域(TAD)的重要因素。然而,黏合蛋白与染色质之间的关联调节机制仍不清楚。在本研究中,我们使用超分辨率成像技术揭示了黏合蛋白亚基 RAD21 在黏合蛋白加载和染色质结构调节中的独特作用。
结果:我们直接观察到,RAD21 的上调导致过多的染色质环挤出,形成类似意大利面条状的形态,RAD21 聚集在焦点中,过多的黏合蛋白呈 bow-tying 状,将一个 TAD 绑成串珠状图案。相比之下,其他四个黏合蛋白亚基的上调导致均匀分布。从机制上讲,我们确定 RAD21 的基本作用归因于 RAD21 加载器相互作用,该相互作用促进了黏合蛋白加载过程,而不是在 RAD21 上调时增加黏合蛋白复合物的丰度。此外,Hi-C 和基因组分析揭示了 RAD21 上调如何影响全基因组的高级染色质结构。在 TAD 角处显示出累积的接触,而在形成意大利面条状结构后,TAD 之间的相互作用增加。重要的是,我们发现乳腺癌细胞中 RAD21 的表达异常升高,患者生存率较差,RAD21 在核内形成珠状。HeLa 细胞中上调的 RAD21 导致隔室转换和与癌症相关基因的上调。
结论:我们的研究结果提供了 RAD21 促进黏合蛋白加载过程的分子机制的关键见解,并解释了黏合蛋白和加载器如何协同工作以促进染色质挤出,这对构建三维基因组组织具有重要意义。
Nucleic Acids Res. 2024-7-8
Epigenetics Chromatin. 2021-7-28
Bioessays. 2023-10
Science. 2019-11-21
Front Immunol. 2025-3-18
Sci Adv. 2025-1-24
bioRxiv. 2024-8-24
Development. 2024-8-1
Epigenetics Chromatin. 2024-5-23
Mol Cell. 2023-5-4
Curr Opin Cell Biol. 2022-2
NAR Genom Bioinform. 2021-5-22
J Recept Signal Transduct Res. 2021-4