Suppr超能文献

《AVN:一种用于鸟鸣分析的深度学习方法》

AVN: A Deep Learning Approach for the Analysis of Birdsong.

作者信息

Koch Therese M I, Marks Ethan S, Roberts Todd F

机构信息

Department of Neuroscience, UT Southwestern Medical Center, Dallas TX, USA.

出版信息

bioRxiv. 2024 Aug 24:2024.05.10.593561. doi: 10.1101/2024.05.10.593561.

Abstract

Deep learning tools for behavior analysis have enabled important new insights and discoveries in neuroscience. Yet, they often compromise interpretability and generalizability for performance, making it difficult to quantitively compare phenotypes across datasets and research groups. We developed a novel deep learning-based behavior analysis pipeline, (AVN), for the learned vocalizations of the most extensively studied vocal learning model species - the zebra finch. AVN annotates songs with high accuracy across multiple animal colonies without the need for any additional training data and generates a comprehensive set of interpretable features to describe the syntax, timing, and acoustic properties of song. We use this feature set to compare song phenotypes across multiple research groups and experiments, and to predict a bird's stage in song development. Additionally, we have developed a novel method to measure song imitation that requires no additional training data for new comparisons or recording environments, and outperforms existing similarity scoring methods in its sensitivity and agreement with expert human judgements of song similarity. These tools are available through the open-source AVN python package and graphical application, which makes them accessible to researchers without any prior coding experience. Altogether, this behavior analysis toolkit stands to facilitate and accelerate the study of vocal behavior by enabling a standardized mapping of phenotypes and learning outcomes, thus helping scientists better link behavior to the underlying neural processes.

摘要

用于行为分析的深度学习工具为神经科学带来了重要的新见解和发现。然而,它们常常为了性能而牺牲可解释性和通用性,使得跨数据集和研究小组对表型进行定量比较变得困难。我们为研究最广泛的发声学习模型物种——斑胸草雀的习得发声,开发了一种基于深度学习的新型行为分析管道(AVN)。AVN能够在无需任何额外训练数据的情况下,对多个动物群体的歌声进行高精度标注,并生成一套全面的可解释特征,以描述歌声的句法、节奏和声学特性。我们使用这个特征集来比较多个研究小组和实验中的歌声表型,并预测鸟类在歌声发育中的阶段。此外,我们还开发了一种测量歌声模仿的新方法,该方法无需额外的训练数据即可用于新的比较或录音环境,并且在灵敏度以及与人类专家对歌声相似度的判断的一致性方面优于现有的相似度评分方法。这些工具可通过开源的AVN Python包和图形应用程序获得,这使得没有任何编码经验的研究人员也能够使用它们。总的来说,这个行为分析工具包通过实现表型和学习结果的标准化映射,有望促进和加速对发声行为的研究,从而帮助科学家更好地将行为与潜在的神经过程联系起来。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3848/12233396/f77610ca8cea/nihpp-2024.05.10.593561v3-f0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验