Suppr超能文献

自注意力机制和交叉注意力机制能够准确预测代谢物与蛋白质的相互作用。

Self- and cross-attention accurately predicts metabolite-protein interactions.

作者信息

Campana Pedro Alonso, Nikoloski Zoran

机构信息

Machine Learning, Department of Computer Science, University of Potsdam, 14476 Potsdam, Germany.

Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany.

出版信息

NAR Genom Bioinform. 2023 Jan 31;5(1):lqad008. doi: 10.1093/nargab/lqad008. eCollection 2023 Mar.

Abstract

Metabolites regulate activity of proteins and thereby affect cellular processes in all organisms. Despite extensive efforts to catalogue the metabolite-protein interactome in different organisms by employing experimental and computational approaches, the coverage of such interactions remains fragmented, particularly for eukaryotes. Here, we make use of two most comprehensive collections, BioSnap and STITCH, of metabolite-protein interactions from seven eukaryotes as gold standards to train a deep learning model that relies on self- and cross-attention over protein sequences. This innovative protein-centric approach results in interaction-specific features derived from protein sequence alone. In addition, we designed and assessed a first double-blind evaluation protocol for metabolite-protein interactions, demonstrating the generalizability of the model. Our results indicated that the excellent performance of the proposed model over simpler alternatives and randomized baselines is due to the local and global features generated by the attention mechanisms. As a results, the predictions from the deep learning model provide a valuable resource for studying metabolite-protein interactions in eukaryotes.

摘要

代谢物调节蛋白质的活性,从而影响所有生物体中的细胞过程。尽管通过实验和计算方法对不同生物体中的代谢物-蛋白质相互作用组进行编目付出了巨大努力,但此类相互作用的覆盖范围仍然支离破碎,尤其是对于真核生物而言。在这里,我们利用来自七种真核生物的两个最全面的代谢物-蛋白质相互作用集合BioSnap和STITCH作为金标准,来训练一个依赖于对蛋白质序列进行自注意力和交叉注意力的深度学习模型。这种创新的以蛋白质为中心的方法仅从蛋白质序列中得出相互作用特异性特征。此外,我们设计并评估了首个针对代谢物-蛋白质相互作用的双盲评估方案,证明了该模型的通用性。我们的结果表明,所提出的模型相对于更简单的替代方案和随机基线具有出色性能,这归因于注意力机制产生的局部和全局特征。因此,深度学习模型的预测为研究真核生物中的代谢物-蛋白质相互作用提供了宝贵资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef5f/9887643/d23e668c7e1a/lqad008fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验