Suppr超能文献

大语言模型在理解人类语言和认知方面的局限性。

The Limitations of Large Language Models for Understanding Human Language and Cognition.

作者信息

Cuskley Christine, Woods Rebecca, Flaherty Molly

机构信息

Language Evolution, Acquisition and Development Group, Newcastle University, Newcastle upon Tyne, UK.

Department of Psychology, Davidson College, Davidson, NC, USA.

出版信息

Open Mind (Camb). 2024 Aug 31;8:1058-1083. doi: 10.1162/opmi_a_00160. eCollection 2024.

Abstract

Researchers have recently argued that the capabilities of Large Language Models (LLMs) can provide new insights into longstanding debates about the role of learning and/or innateness in the development and evolution of human language. Here, we argue on two grounds that LLMs alone tell us very little about human language and cognition in terms of acquisition and evolution. First, any similarities between human language and the output of LLMs are purely functional. Borrowing the "four questions" framework from ethology, we argue that LLMs do is superficially similar, but they do it is not. In contrast to the rich multimodal data humans leverage in interactive language learning, LLMs rely on immersive exposure to vastly greater quantities of unimodal text data, with recent multimodal efforts built upon mappings between images and text. Second, turning to functional similarities between human language and LLM output, we show that human linguistic behavior is much broader. LLMs were designed to imitate the very specific behavior of human ; while they do this impressively, the underlying mechanisms of these models limit their capacities for meaning and naturalistic interaction, and their potential for dealing with the diversity in human language. We conclude by emphasising that LLMs are not theories of language, but tools that may be used to study language, and that can only be effectively applied with specific hypotheses to motivate research.

摘要

研究人员最近认为,大语言模型(LLMs)的能力可以为关于学习和/或先天性在人类语言发展和进化中的作用的长期争论提供新的见解。在此,我们基于两个理由认为,仅靠大语言模型,在语言习得和进化方面,我们对人类语言和认知了解甚少。首先,人类语言与大语言模型输出之间的任何相似之处都只是表面上的功能相似。借鉴动物行为学中的“四个问题”框架,我们认为大语言模型的行为只是表面上相似,但它们的行为方式并非如此。与人类在交互式语言学习中利用的丰富多模态数据不同,大语言模型依赖于大量单模态文本数据的沉浸式接触,最近的多模态研究是基于图像和文本之间的映射构建的。其次,谈到人类语言与大语言模型输出之间的功能相似性,我们表明人类语言行为要广泛得多。大语言模型旨在模仿人类非常特定的行为;虽然它们在这方面表现出色,但这些模型的底层机制限制了它们的意义表达能力和自然交互能力,以及它们处理人类语言多样性的潜力。我们最后强调,大语言模型不是语言理论,而是可用于研究语言的工具,并且只有在特定假设的推动下才能有效地应用于研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验