Suppr超能文献

大型语言模型展示了统计学习在语言中的潜力。

Large Language Models Demonstrate the Potential of Statistical Learning in Language.

机构信息

Department of Psychology, Cornell University.

Center for Humanities Computing, Aarhus University.

出版信息

Cogn Sci. 2023 Mar;47(3):e13256. doi: 10.1111/cogs.13256.

Abstract

To what degree can language be acquired from linguistic input alone? This question has vexed scholars for millennia and is still a major focus of debate in the cognitive science of language. The complexity of human language has hampered progress because studies of language-especially those involving computational modeling-have only been able to deal with small fragments of our linguistic skills. We suggest that the most recent generation of Large Language Models (LLMs) might finally provide the computational tools to determine empirically how much of the human language ability can be acquired from linguistic experience. LLMs are sophisticated deep learning architectures trained on vast amounts of natural language data, enabling them to perform an impressive range of linguistic tasks. We argue that, despite their clear semantic and pragmatic limitations, LLMs have already demonstrated that human-like grammatical language can be acquired without the need for a built-in grammar. Thus, while there is still much to learn about how humans acquire and use language, LLMs provide full-fledged computational models for cognitive scientists to empirically evaluate just how far statistical learning might take us in explaining the full complexity of human language.

摘要

仅凭语言输入能在多大程度上掌握语言?这个问题困扰了学者们数千年,至今仍是语言认知科学的主要争论焦点。人类语言的复杂性阻碍了研究的进展,因为语言研究——尤其是涉及计算建模的研究——只能处理我们语言技能的一小部分。我们认为,最近一代的大型语言模型(LLM)可能最终提供了计算工具,以实证确定从语言经验中可以习得多少人类语言能力。LLM 是在大量自然语言数据上训练的复杂深度学习架构,使它们能够执行令人印象深刻的一系列语言任务。我们认为,尽管它们在语义和语用方面存在明显的局限性,但 LLM 已经证明,无需内置语法也可以习得类似人类的语法语言。因此,尽管关于人类如何习得和使用语言还有很多需要了解的地方,但 LLM 为认知科学家提供了成熟的计算模型,以便从经验上评估统计学习在解释人类语言的全部复杂性方面能走多远。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验