Suppr超能文献

基于卷积神经网络的头颅侧位片自动点检测:两步法。

Automatic point detection on cephalograms using convolutional neural networks: A two-step method.

机构信息

Department of Dental Materials Science, School of Dentistry, Aichi Gakuin University.

Center for Advanced Oral Science, Graduate School of Dentistry, Aichi Gakuin University.

出版信息

Dent Mater J. 2024 Sep 28;43(5):701-710. doi: 10.4012/dmj.2024-052. Epub 2024 Sep 4.

Abstract

This project aimed to develop an artificial intelligence program tailored for cephalometric images. The program employs a convolutional neural network with 6 convolutional layers and 2 affine layers. It identifies 18 key points on the skull to compute various angles essential for diagnosis. Utilizing a custom-built desktop computer with a moderately priced graphics processing unit, cephalogram images were resized to 800×800 pixels. Training data comprised 833 images, augmented 100 times; an additional 179 images were used for testing. Due to the complexity of training with full-size images, training was divided into two steps. The first step reduced images to 128×128 pixels, recognizing all 18 points. In the second step, 100×100 pixels blocks were extracted from original images for individual point training. The program then measured six angles, achieving an average error of 3.1 pixels for the 18 points, with SNA and SNB angles showing an average difference of less than 1°.

摘要

本项目旨在开发一款针对头影测量图像的人工智能程序。该程序采用了一个带有 6 个卷积层和 2 个仿射层的卷积神经网络。它可以识别颅骨上的 18 个关键点,计算出诊断所需的各种角度。利用一台带有中等价位图形处理单元的定制台式计算机,对头影测量图像进行了 800×800 像素的调整。训练数据包括 833 张图像,扩充了 100 倍;另外还有 179 张图像用于测试。由于全尺寸图像的训练复杂性,训练分为两个步骤。第一步将图像缩小到 128×128 像素,识别所有 18 个点。在第二步中,从原始图像中提取 100×100 像素的块,用于单个点的训练。该程序随后测量了六个角度,18 个点的平均误差为 3.1 像素,SNA 和 SNB 角度的平均差异小于 1°。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验