使用级联卷积神经网络对来自全国多中心的头颅侧位片进行头颅侧位标志点自动识别的准确性

Accuracy of automated identification of lateral cephalometric landmarks using cascade convolutional neural networks on lateral cephalograms from nationwide multi-centres.

作者信息

Kim Jaerong, Kim Inhwan, Kim Yoon-Ji, Kim Minji, Cho Jin-Hyoung, Hong Mihee, Kang Kyung-Hwa, Lim Sung-Hoon, Kim Su-Jung, Kim Young Ho, Kim Namkug, Sung Sang-Jin, Baek Seung-Hak

机构信息

Department of Orthodontics, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.

出版信息

Orthod Craniofac Res. 2021 Dec;24 Suppl 2:59-67. doi: 10.1111/ocr.12493. Epub 2021 Jun 27.

Abstract

OBJECTIVE

To investigate the accuracy of automated identification of cephalometric landmarks using the cascade convolutional neural networks (CNN) on lateral cephalograms acquired from nationwide multi-centres.

SETTINGS AND SAMPLE POPULATION

A total of 3150 lateral cephalograms were acquired from 10 university hospitals in South Korea for training.

MATERIALS AND METHODS

We evaluated the accuracy of the developed model with independent 100 lateral cephalograms as an external validation. Two orthodontists independently identified the anatomic landmarks of the test data set using the V-ceph software (version 8.0, Osstem, Seoul, Korea). The mean positions of the landmarks identified by two orthodontists were regarded as the gold standard. The performance of the CNN model was evaluated by calculating the mean absolute distance between the gold standard and the automatically detected positions. Factors associated with the detection accuracy for landmarks were analysed using the linear regression models.

RESULTS

The mean inter-examiner difference was 1.31 ± 1.13 mm. The overall automated detection error was 1.36 ± 0.98 mm. The mean detection error for each landmark ranged between 0.46 ± 0.37 mm (maxillary incisor crown tip) and 2.09 ± 1.91 mm (distal root tip of the mandibular first molar). A significant difference in the detection accuracy among cephalograms was noted according to hospital (P = .011), sensor type (P < .01), and cephalography machine model (P < .01).

CONCLUSION

The automated cephalometric landmark detection model may aid in preliminary screening for patient diagnosis and mid-treatment assessment, independent of the type of the radiography machines tested.

摘要

目的

利用级联卷积神经网络(CNN)对从全国多中心采集的头颅侧位片进行头影测量标志点的自动识别,并调查其准确性。

设置与样本人群

从韩国10所大学医院采集了共3150张头颅侧位片用于训练。

材料与方法

我们用独立的100张头颅侧位片作为外部验证来评估所开发模型的准确性。两名正畸医生使用V-ceph软件(版本8.0,韩国首尔奥齿泰公司)独立识别测试数据集的解剖标志点。两名正畸医生识别出的标志点的平均位置被视为金标准。通过计算金标准与自动检测位置之间的平均绝对距离来评估CNN模型的性能。使用线性回归模型分析与标志点检测准确性相关的因素。

结果

检查者之间的平均差异为1.31±1.13毫米。整体自动检测误差为1.36±0.98毫米。每个标志点的平均检测误差范围在0.46±0.37毫米(上颌切牙冠尖)至2.09±1.91毫米(下颌第一磨牙远中根尖)之间。根据医院(P = 0.011)、传感器类型(P < 0.01)和头颅摄影机器型号(P < 0.01),头颅侧位片之间的检测准确性存在显著差异。

结论

自动头影测量标志点检测模型可能有助于患者诊断的初步筛查和治疗中期评估,且与所测试的射线照相机器类型无关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索