Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Ave, Boston, MA, 02115, USA.
Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
Sci Rep. 2024 Sep 4;14(1):20618. doi: 10.1038/s41598-024-71714-7.
Protein biomarkers are associated with mortality in cardiovascular disease, but their effect on predicting respiratory and all-cause mortality is not clear. We tested whether a protein risk score (protRS) can improve prediction of all-cause mortality over clinical risk factors in smokers. We utilized smoking-enriched (COPDGene, LSC, SPIROMICS) and general population-based (MESA) cohorts with SomaScan proteomic and mortality data. We split COPDGene into training and testing sets (50:50) and developed a protRS based on respiratory mortality effect size and parsimony. We tested multivariable associations of the protRS with all-cause, respiratory, and cardiovascular mortality, and performed meta-analysis, area-under-the-curve (AUC), and network analyses. We included 2232 participants. In COPDGene, a penalized regression-based protRS was most highly associated with respiratory mortality (OR 9.2) and parsimonious (15 proteins). This protRS was associated with all-cause mortality (random effects HR 1.79 [95% CI 1.31-2.43]). Adding the protRS to clinical covariates improved all-cause mortality prediction in COPDGene (AUC 0.87 vs 0.82) and SPIROMICS (0.74 vs 0.6), but not in LSC and MESA. Protein-protein interaction network analyses implicate cytokine signaling, innate immune responses, and extracellular matrix turnover. A blood-based protein risk score predicts all-cause and respiratory mortality, identifies potential drivers of mortality, and demonstrates heterogeneity in effects amongst cohorts.
蛋白质生物标志物与心血管疾病的死亡率相关,但它们对预测呼吸和全因死亡率的影响尚不清楚。我们测试了蛋白质风险评分(protRS)是否可以改善吸烟者的临床危险因素对全因死亡率的预测。我们利用了富含吸烟人群的(COPDGene、LSC、SPIROMICS)和一般人群的(MESA)队列,以及 SomaScan 蛋白质组学和死亡率数据。我们将 COPDGene 分为训练集和测试集(50:50),并基于呼吸死亡率效应大小和简约性开发了 protRS。我们测试了 protRS 与全因、呼吸和心血管死亡率的多变量相关性,并进行了荟萃分析、曲线下面积(AUC)和网络分析。我们纳入了 2232 名参与者。在 COPDGene 中,基于惩罚回归的 protRS 与呼吸死亡率相关性最高(OR 9.2),且简约性最佳(15 种蛋白质)。该 protRS 与全因死亡率相关(随机效应 HR 1.79 [95% CI 1.31-2.43])。在 COPDGene 和 SPIROMICS 中,将 protRS 添加到临床协变量中可以改善全因死亡率的预测(AUC 分别为 0.87 比 0.82 和 0.74 比 0.6),但在 LSC 和 MESA 中没有改善。蛋白质-蛋白质相互作用网络分析表明细胞因子信号转导、固有免疫反应和细胞外基质周转。基于血液的蛋白质风险评分可以预测全因和呼吸死亡率,确定死亡率的潜在驱动因素,并显示出队列之间效应的异质性。