Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.
Servicio de Neumología, Instituto de Investigación del Hospital Universitario de la Princesa (IISP), Universidad Autónoma de Madrid, Madrid, Spain.
BMC Med Res Methodol. 2017 Dec 21;17(1):172. doi: 10.1186/s12874-017-0433-2.
Prediction models and prognostic scores have been increasingly popular in both clinical practice and clinical research settings, for example to aid in risk-based decision making or control for confounding. In many medical fields, a large number of prognostic scores are available, but practitioners may find it difficult to choose between them due to lack of external validation as well as lack of comparisons between them.
Borrowing methodology from network meta-analysis, we describe an approach to Multiple Score Comparison meta-analysis (MSC) which permits concurrent external validation and comparisons of prognostic scores using individual patient data (IPD) arising from a large-scale international collaboration. We describe the challenges in adapting network meta-analysis to the MSC setting, for instance the need to explicitly include correlations between the scores on a cohort level, and how to deal with many multi-score studies. We propose first using IPD to make cohort-level aggregate discrimination or calibration scores, comparing all to a common comparator. Then, standard network meta-analysis techniques can be applied, taking care to consider correlation structures in cohorts with multiple scores. Transitivity, consistency and heterogeneity are also examined.
We provide a clinical application, comparing prognostic scores for 3-year mortality in patients with chronic obstructive pulmonary disease using data from a large-scale collaborative initiative. We focus on the discriminative properties of the prognostic scores. Our results show clear differences in performance, with ADO and eBODE showing higher discrimination with respect to mortality than other considered scores. The assumptions of transitivity and local and global consistency were not violated. Heterogeneity was small.
We applied a network meta-analytic methodology to externally validate and concurrently compare the prognostic properties of clinical scores. Our large-scale external validation indicates that the scores with the best discriminative properties to predict 3 year mortality in patients with COPD are ADO and eBODE.
预测模型和预后评分在临床实践和临床研究中越来越受欢迎,例如,帮助基于风险的决策或控制混杂因素。在许多医学领域,有大量的预后评分,但由于缺乏外部验证以及缺乏相互比较,临床医生可能难以在它们之间进行选择。
借鉴网络荟萃分析的方法,我们描述了一种多评分比较荟萃分析(MSC)的方法,该方法允许使用来自大规模国际合作的个体患者数据(IPD)同时进行外部验证和预后评分比较。我们描述了将网络荟萃分析方法应用于 MSC 环境中所面临的挑战,例如需要在队列水平上明确纳入评分之间的相关性,以及如何处理许多多评分研究。我们建议首先使用 IPD 生成队列级别的综合区分或校准评分,将所有评分与共同比较者进行比较。然后,可以应用标准的网络荟萃分析技术,但要注意考虑具有多个评分的队列中的相关性结构。还检查了可传递性、一致性和异质性。
我们提供了一个临床应用,使用来自大规模合作倡议的数据比较慢性阻塞性肺疾病患者 3 年死亡率的预后评分。我们重点关注预后评分的区分性能。我们的结果显示出明显的性能差异,ADO 和 eBODE 与其他考虑的评分相比,死亡率的区分度更高。可传递性、局部和全局一致性的假设没有被违反。异质性较小。
我们应用网络荟萃分析方法对临床评分的预后性能进行外部验证和同时比较。我们的大规模外部验证表明,预测 COPD 患者 3 年死亡率的最佳区分性能的评分是 ADO 和 eBODE。