Suppr超能文献

MADE-for-ASD:一种用于自闭症谱系障碍诊断的多图谱深度学习集成网络。

MADE-for-ASD: A multi-atlas deep ensemble network for diagnosing Autism Spectrum Disorder.

机构信息

Australian National University, Canberra, ACT, 2601, Australia.

Curtin University, Bentley, WA, 6102, Australia; BRAC University, Dhaka, 1212, Bangladesh.

出版信息

Comput Biol Med. 2024 Nov;182:109083. doi: 10.1016/j.compbiomed.2024.109083. Epub 2024 Sep 3.

Abstract

In response to the global need for efficient early diagnosis of Autism Spectrum Disorder (ASD), this paper bridges the gap between traditional, time-consuming diagnostic methods and potential automated solutions. We propose a multi-atlas deep ensemble network, MADE-for-ASD, that integrates multiple atlases of the brain's functional magnetic resonance imaging (fMRI) data through a weighted deep ensemble network. Our approach integrates demographic information into the prediction workflow, which enhances ASD diagnosis performance and offers a more holistic perspective on patient profiling. We experiment with the well-known publicly available ABIDE (Autism Brain Imaging Data Exchange) I dataset, consisting of resting state fMRI data from 17 different laboratories around the globe. Our proposed system achieves 75.20% accuracy on the entire dataset and 96.40% on a specific subset - both surpassing reported ASD diagnosis accuracy in ABIDE I fMRI studies. Specifically, our model improves by 4.4 percentage points over prior works on the same amount of data. The model exhibits a sensitivity of 82.90% and a specificity of 69.70% on the entire dataset, and 91.00% and 99.50%, respectively, on the specific subset. We leverage the F-score to pinpoint the top 10 ROI in ASD diagnosis, such as precuneus and anterior cingulate/ventromedial. The proposed system can potentially pave the way for more cost-effective, efficient and scalable strategies in ASD diagnosis. Codes and evaluations are publicly available at https://github.com/hasan-rakibul/MADE-for-ASD.

摘要

为满足全球对自闭症谱系障碍(ASD)高效早期诊断的需求,本文弥合了传统耗时的诊断方法与潜在自动化解决方案之间的差距。我们提出了一种多图谱深度集成网络 MADE-for-ASD,该网络通过加权深度集成网络整合了大脑功能磁共振成像(fMRI)数据的多个图谱。我们的方法将人口统计学信息纳入预测工作流程,从而提高了 ASD 诊断性能,并为患者分析提供了更全面的视角。我们使用了著名的公开可用 ABIDE(自闭症脑成像数据交换)I 数据集进行实验,该数据集包含来自全球 17 个不同实验室的静息态 fMRI 数据。我们的系统在整个数据集上实现了 75.20%的准确率,在特定子集上达到了 96.40%的准确率,均超过了 ABIDE I fMRI 研究中报告的 ASD 诊断准确率。具体来说,我们的模型在相同数量的数据上比之前的工作提高了 4.4 个百分点。该模型在整个数据集上的灵敏度为 82.90%,特异性为 69.70%,在特定子集上的灵敏度和特异性分别为 91.00%和 99.50%。我们利用 F 分数确定了 ASD 诊断中前 10 个 ROI,如楔前叶和前扣带/腹侧。该系统可能为 ASD 诊断提供更具成本效益、高效和可扩展的策略。代码和评估可在 https://github.com/hasan-rakibul/MADE-for-ASD 上获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验