Abbas S Qasim, Chi Lianhua, Chen Yi-Ping Phoebe
Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3086, Australia.
Artif Intell Med. 2023 Feb;136:102475. doi: 10.1016/j.artmed.2022.102475. Epub 2022 Dec 21.
The growing prevalence of neurological disorders, e.g., Autism Spectrum Disorder (ASD), demands robust computer-aided diagnosis (CAD) due to the diverse symptoms which require early intervention, particularly in young children. The absence of a benchmark neuroimaging diagnostics paves the way to study transitions in the brain's anatomical structure and neurological patterns associated with ASD. The existing CADs take advantage of the large-scale baseline dataset from the Autism Brain Imaging Data Exchange (ABIDE) repository to improve diagnostic performance, but the involvement of multisite data also amplifies the variabilities and heterogeneities that hinder satisfactory results. To resolve this problem, we propose a Deep Multimodal Neuroimaging Framework (DeepMNF) that employs Functional Magnetic Resonance Imaging (fMRI) and Structural Magnetic Resonance Imaging (sMRI) to integrate cross-modality spatiotemporal information by exploiting 2-dimensional time-series data along with 3-dimensional images. The purpose is to fuse complementary information that increases group differences and homogeneities. To the best of our knowledge, our DeepMNF achieves superior validation performance than the best reported result on the ABIDE-1 repository involving datasets from all available screening sites. In this work, we also demonstrate the performance of the studied modalities in a single model as well as their possible combinations to develop the multimodal framework.
神经系统疾病,如自闭症谱系障碍(ASD)的患病率不断上升,由于其多样的症状需要早期干预,尤其是对幼儿而言,因此需要强大的计算机辅助诊断(CAD)。缺乏基准神经影像学诊断方法为研究与ASD相关的大脑解剖结构和神经模式的转变铺平了道路。现有的CAD利用来自自闭症大脑成像数据交换(ABIDE)存储库的大规模基线数据集来提高诊断性能,但多站点数据的参与也放大了阻碍获得满意结果的变异性和异质性。为了解决这个问题,我们提出了一种深度多模态神经影像学框架(DeepMNF),该框架采用功能磁共振成像(fMRI)和结构磁共振成像(sMRI),通过利用二维时间序列数据以及三维图像来整合跨模态时空信息。目的是融合互补信息,以增加组间差异和同质性。据我们所知,我们的DeepMNF在ABIDE-1存储库上的验证性能优于涉及所有可用筛查站点数据集的最佳报告结果。在这项工作中,我们还展示了所研究模态在单个模型中的性能以及它们可能的组合,以开发多模态框架。