Arabestani Mohammad Reza, Saadat Masoumeh, Taherkhani Amir
Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
Genomics Inform. 2024 Sep 4;22(1):13. doi: 10.1186/s44342-024-00015-2.
Antibiotic resistance poses a pressing and crucial global public health challenge, leading to significant clinical and health-related consequences. Substantial evidence highlights the pivotal involvement of rifampicin monooxygenase (RIFMO) in the context of antibiotic resistance. Hence, inhibiting RIFMO could offer potential in the treatment of various infections. Anthraquinones, a group of organic compounds, have shown promise in addressing tuberculosis. This study employed integrated bioinformatics approaches to evaluate the potential inhibitory effects of a selection of anthraquinones on RIFMO. The findings were subsequently compared with those of rifampicin (RIF), serving as a positive control inhibitor.
The AutoDock 4.0 tool assessed the binding free energy between 21 anthraquinones and the RIFMO catalytic cleft. The ligands were ranked based on the most favorable scores derived from ΔG. The docking analyses for the highest-ranked anthraquinone and RIF underwent a cross-validation process. This validation procedure utilized the SwissDock server and the Schrödinger Maestro docking software. Molecular dynamics simulations were conducted to scrutinize the stability of the backbone atoms in free RIFMO, RIFMO-RIF, and RIFMO complexed with the top-ranked anthraquinone throughout a 100-ns computer simulation. The Discovery Studio Visualizer tool visualized interactions between RIFMO residues and ligands. An evaluation of the pharmacokinetics and toxicity profiles of the tested compounds was also conducted.
Five anthraquinones were indicated with ΔG scores less than - 10 kcal/mol. Hypericin emerged as the most potent RIFMO inhibitor, boasting a ΔG score and inhibition constant value of - 12.11 kcal/mol and 798.99 pM, respectively. The agreement across AutoDock 4.0, SwissDock, and Schrödinger Maestro results highlighted hypericin's notable binding affinity to the RIFMO catalytic cleft. The RIFMO-hypericin complex achieved stability after a 70-ns computer simulation, exhibiting a root-mean-square deviation of 0.55 nm. Oral bioavailability analysis revealed that all anthraquinones except hypericin, sennidin A, and sennidin B may be suitable for oral administration. Furthermore, the carcinogenicity prediction analysis indicated a favorable safety profile for all examined anthraquinones.
Inhibiting RIFMO, particularly with anthraquinones such as hypericin, holds promise as a potential therapeutic strategy for infectious diseases.
抗生素耐药性构成了紧迫且关键的全球公共卫生挑战,会导致重大的临床及与健康相关的后果。大量证据凸显了利福平单加氧酶(RIFMO)在抗生素耐药性背景下的关键作用。因此,抑制RIFMO可能为各种感染的治疗提供潜力。蒽醌类化合物是一类有机化合物,在治疗结核病方面已显示出前景。本研究采用综合生物信息学方法评估一系列蒽醌类化合物对RIFMO的潜在抑制作用。随后将研究结果与作为阳性对照抑制剂的利福平(RIF)的结果进行比较。
使用AutoDock 4.0工具评估21种蒽醌类化合物与RIFMO催化裂隙之间的结合自由能。根据从ΔG得出的最有利得分对配体进行排名。对排名最高的蒽醌和RIF进行的对接分析经历了交叉验证过程。该验证程序使用了SwissDock服务器和Schrödinger Maestro对接软件。进行分子动力学模拟,以在100纳秒的计算机模拟过程中仔细研究游离RIFMO、RIFMO-RIF以及与排名最高的蒽醌复合的RIFMO中主链原子的稳定性。Discovery Studio Visualizer工具可视化RIFMO残基与配体之间的相互作用。还对测试化合物的药代动力学和毒性概况进行了评估。
五种蒽醌类化合物的ΔG得分低于 -10千卡/摩尔。金丝桃素成为最有效的RIFMO抑制剂,其ΔG得分和抑制常数分别为 -12.11千卡/摩尔和798.99皮摩尔。AutoDock 4.0、SwissDock和Schrödinger Maestro的结果一致,凸显了金丝桃素对RIFMO催化裂隙的显著结合亲和力。在70纳秒的计算机模拟后,RIFMO-金丝桃素复合物达到稳定状态,均方根偏差为0.55纳米。口服生物利用度分析表明,除金丝桃素、番泻苷A和番泻苷B外,所有蒽醌类化合物可能都适合口服给药。此外,致癌性预测分析表明所有检测的蒽醌类化合物的安全性良好。
抑制RIFMO,特别是使用金丝桃素等蒽醌类化合物,有望成为传染病的一种潜在治疗策略。