Suppr超能文献

基于肿瘤标志物炎症营养评分的非小细胞肺癌预后列线图

A prognostic nomogram of non-small cell lung cancer based on tumor marker inflammatory nutrition score.

作者信息

Feng Yan, Qiao Han, Han Xiaolei, Tang Huaping

机构信息

Department of Respiratory Medicine, Qingdao University, Qingdao, China.

Department of Health Office, Qingdao Municipal Hospital, Qingdao, China.

出版信息

Transl Lung Cancer Res. 2024 Dec 31;13(12):3392-3406. doi: 10.21037/tlcr-24-708. Epub 2024 Dec 26.

Abstract

BACKGROUND

Patients diagnosed with non-small cell lung cancer (NSCLC) usually have a poor prognosis, so it is critical to identify effective biomarkers for prognosis prediction. The aim of this study is to establish a nomogram to evaluate the prognostic significance of blood markers in patients with NSCLC and provide reference for clinical work.

METHODS

A total of 486 patients with NSCLC who were admitted to hospital from January 2009 to December 2019 were retrospectively analyzed. The cohort was divided into a training set (n=340) and a validation set (n=146). Eleven blood indicators were selected as prognostic parameters by the least absolute shrinkage and selection operator (LASSO) model to establish tumor marker inflammatory nutrition (TMIN) score. Univariate and multivariate regression analyses were performed to establish a TMIN-nomogram model for predicting overall survival (OS) and progression-free survival (PFS). Receiver operating characteristic (ROC) survival curve, calibration curve and clinical decision curve analysis (DCA) were used to evaluate the predictive performance of the TMIN-nomogram model.

RESULTS

The TMIN score were constructed for 11 of the most valuable prognostic variables, including white blood cells (WBCs), neutrophils (N), platelets (PLT), albumin (ALB), globulin (GLB), prealbumin (PAB), carcinoembryonic antigen (CEA), cytokeratin fragment 21-1 (CYFRA21-1), fibrinogen (FIB), platelet/lymphocyte ratio (PLR), and lymphocyte/monocyte ratio (LMR), and patients were divided into low-risk and high-risk groups using optimal cutovers. The TMIN score showed good predictive value for both OS and PFS. In addition, The TMIN score and sex, smoke, pathological classification, American Joint Committee on Cancer stage (AJCC stage), tumor diameter and Eastern Cooperative Oncology Group-performance status (ECOG-PS) and other clinical indicators showed a strong correlation. Univariate and multivariate analyses confirmed that TMIN score was an independent risk factor for OS and PFS in NSCLC patients. It is worth noting that the TMIN nomogram model of OS and PFS based on multivariate analysis combined with TMIN score has very good prognostic value for NSCLC patients.

CONCLUSIONS

TMIN is a promising predictor for PFS and OS in NSCLC patients. The TMIN-nomogram prediction model can be used as an effective tool for the comprehensive prognosis evaluation of NSCLC patients.

摘要

背景

被诊断为非小细胞肺癌(NSCLC)的患者通常预后较差,因此识别有效的预后预测生物标志物至关重要。本研究的目的是建立一种列线图,以评估NSCLC患者血液标志物的预后意义,并为临床工作提供参考。

方法

回顾性分析2009年1月至2019年12月期间收治的486例NSCLC患者。该队列被分为训练集(n = 340)和验证集(n = 146)。通过最小绝对收缩和选择算子(LASSO)模型选择11项血液指标作为预后参数,以建立肿瘤标志物炎症营养(TMIN)评分。进行单因素和多因素回归分析,以建立用于预测总生存期(OS)和无进展生存期(PFS)的TMIN列线图模型。采用受试者工作特征(ROC)生存曲线、校准曲线和临床决策曲线分析(DCA)来评估TMIN列线图模型的预测性能。

结果

针对11个最有价值的预后变量构建了TMIN评分,包括白细胞(WBC)、中性粒细胞(N)、血小板(PLT)、白蛋白(ALB)、球蛋白(GLB)、前白蛋白(PAB)、癌胚抗原(CEA)、细胞角蛋白片段21-1(CYFRA21-1)、纤维蛋白原(FIB)、血小板/淋巴细胞比值(PLR)和淋巴细胞/单核细胞比值(LMR),并使用最佳切点将患者分为低风险和高风险组。TMIN评分对OS和PFS均显示出良好的预测价值。此外,TMIN评分与性别、吸烟、病理分类、美国癌症联合委员会分期(AJCC分期)、肿瘤直径和东部肿瘤协作组体能状态(ECOG-PS)等临床指标显示出强烈的相关性。单因素和多因素分析证实,TMIN评分是NSCLC患者OS和PFS的独立危险因素。值得注意的是,基于多因素分析结合TMIN评分的OS和PFS的TMIN列线图模型对NSCLC患者具有非常好的预后价值。

结论

TMIN是NSCLC患者PFS和OS的有前景的预测指标。TMIN列线图预测模型可作为NSCLC患者综合预后评估的有效工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验