Zhang Yu, Liu Li-Hua, Xu Bo, Zhang Zhiqian, Yang Min, He Yiyang, Chen Jingjing, Zhang Yang, Hu Yucheng, Chen Xipeng, Sun Zitong, Ge Qijun, Wu Song, Lei Wei, Li Kaizheng, Cui Hua, Yang Gangzhu, Zhao Xuemei, Wang Man, Xia Jiaqi, Cao Zhen, Jiang Ao, Wu Yi-Rui
Tidetron Bioworks Technology (Guangzhou) Co., Ltd., Guangzhou Qianxiang Bioworks Co., Ltd., Guangzhou 510000, China.
Biology Department and Institute of Marine Sciences, College of Science, Shantou University, Shantou 515063, China.
Acta Pharm Sin B. 2024 Aug;14(8):3476-3492. doi: 10.1016/j.apsb.2024.05.003. Epub 2024 May 10.
Owing to their limited accuracy and narrow applicability, current antimicrobial peptide (AMP) prediction models face obstacles in industrial application. To address these limitations, we developed and improved an AMP prediction model using Comparing and Optimizing Multiple DEep Learning (COMDEL) algorithms, coupled with high-throughput AMP screening method, finally reaching an accuracy of 94.8% in test and 88% in experiment verification, surpassing other state-of-the-art models. In conjunction with COMDEL, we employed the phage-assisted evolution method to screen Sortase and developed a cell-free AMP synthesis system , ultimately increasing AMPs yields to a range of 0.5-2.1 g/L within hours. Moreover, by multi-omics analysis using COMDEL, we identified as the most promising candidate for AMP generation among 35 edible probiotics. Following this, we developed a microdroplet sorting approach and successfully screened three mutants, each showing a twofold increase in antimicrobial ability, underscoring their substantial industrial application values.
由于目前的抗菌肽(AMP)预测模型准确性有限且适用性狭窄,在工业应用中面临障碍。为了解决这些局限性,我们开发并改进了一种使用比较和优化多重深度学习(COMDEL)算法的AMP预测模型,并结合高通量AMP筛选方法,最终在测试中的准确率达到94.8%,在实验验证中达到88%,超过了其他最先进的模型。结合COMDEL,我们采用噬菌体辅助进化方法筛选分选酶,并开发了无细胞AMP合成系统,最终在数小时内将AMP产量提高到0.5-2.1克/升的范围。此外,通过使用COMDEL的多组学分析,我们在35种可食用益生菌中确定了最有希望产生AMP的候选菌株。在此之后,我们开发了一种微滴分选方法,并成功筛选出三种突变体,每种突变体的抗菌能力都提高了两倍,突出了它们巨大的工业应用价值。