Suppr超能文献

深度AmPEP30:利用深度学习改进短抗菌肽预测

Deep-AmPEP30: Improve Short Antimicrobial Peptides Prediction with Deep Learning.

作者信息

Yan Jielu, Bhadra Pratiti, Li Ang, Sethiya Pooja, Qin Longguang, Tai Hio Kuan, Wong Koon Ho, Siu Shirley W I

机构信息

Department of Computer and Information Science, University of Macau, Macau, China.

Faculty of Health Sciences, University of Macau, Macau, China.

出版信息

Mol Ther Nucleic Acids. 2020 Jun 5;20:882-894. doi: 10.1016/j.omtn.2020.05.006. Epub 2020 May 12.

Abstract

Antimicrobial peptides (AMPs) are a valuable source of antimicrobial agents and a potential solution to the multi-drug resistance problem. In particular, short-length AMPs have been shown to have enhanced antimicrobial activities, higher stability, and lower toxicity to human cells. We present a short-length (≤30 aa) AMP prediction method, Deep-AmPEP30, developed based on an optimal feature set of PseKRAAC reduced amino acids composition and convolutional neural network. On a balanced benchmark dataset of 188 samples, Deep-AmPEP30 yields an improved performance of 77% in accuracy, 85% in the area under the receiver operating characteristic curve (AUC-ROC), and 85% in area under the precision-recall curve (AUC-PR) over existing machine learning-based methods. To demonstrate its power, we screened the genome sequence of Candida glabrata-a gut commensal fungus expected to interact with and/or inhibit other microbes in the gut-for potential AMPs and identified a peptide of 20 aa (P3, FWELWKFLKSLWSIFPRRRP) with strong anti-bacteria activity against Bacillus subtilis and Vibrio parahaemolyticus. The potency of the peptide is remarkably comparable to that of ampicillin. Therefore, Deep-AmPEP30 is a promising prediction tool to identify short-length AMPs from genomic sequences for drug discovery. Our method is available at https://cbbio.cis.um.edu.mo/AxPEP for both individual sequence prediction and genome screening for AMPs.

摘要

抗菌肽(AMPs)是抗菌剂的宝贵来源,也是解决多重耐药问题的潜在方案。特别是,短长度抗菌肽已被证明具有增强的抗菌活性、更高的稳定性以及对人体细胞更低的毒性。我们提出了一种基于PseKRAAC简化氨基酸组成的最优特征集和卷积神经网络开发的短长度(≤30个氨基酸)抗菌肽预测方法Deep-AmPEP30。在一个由188个样本组成的平衡基准数据集上,与现有的基于机器学习的方法相比,Deep-AmPEP30在准确率上提高到77%,在受试者工作特征曲线下面积(AUC-ROC)上达到85%,在精确召回率曲线下面积(AUC-PR)上达到85%。为了展示其能力,我们筛选了光滑念珠菌(一种预计会与肠道中的其他微生物相互作用和/或抑制其他微生物的肠道共生真菌)的基因组序列以寻找潜在的抗菌肽,并鉴定出一种20个氨基酸的肽(P3,FWELWKFLKSLWSIFPRRRP),它对枯草芽孢杆菌和副溶血性弧菌具有很强的抗菌活性。该肽的效力与氨苄青霉素相当显著。因此,Deep-AmPEP30是一种很有前景的预测工具,可用于从基因组序列中识别短长度抗菌肽以进行药物发现。我们的方法可在https://cbbio.cis.um.edu.mo/AxPEP上获取,用于单个序列预测和抗菌肽的基因组筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05d8/7256447/89387dc97747/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验