Suppr超能文献

与工程化的 D-丙氨酸营养缺陷型 的短暂感染。

Transient infection of with an engineered D-alanine auxotroph of .

机构信息

Department of Microbiology, University of Georgia, Athens, Georgia, USA.

Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.

出版信息

Appl Environ Microbiol. 2024 Oct 23;90(10):e0129824. doi: 10.1128/aem.01298-24. Epub 2024 Sep 5.

Abstract

The symbiosis between and the Hawaiian bobtail squid, , is a tractable and well-studied model of bacteria-animal mutualism. Here, we developed a method to transiently colonize using D-alanine (D-ala) auxotrophy of the symbiont, controlling the persistence of viable infection by supplying or withholding D-ala. We generated alanine racemase () mutants of that lack avenues for mutational suppression of auxotrophy or reversion to prototrophy. Surprisingly, an ∆ mutant did not require D-ala to grow in a minimal medium, a phenomenon requiring , which encodes cystathionine β-lyase. Likewise, overexpression of suppressed D-ala auxotrophy in a rich medium. To block potential mechanisms of suppression, we combined the ∆ mutation with deletions of and/or , which encodes a broad-spectrum racemase and investigated the suppression rates of four D-ala auxotrophic strains. We then focused on ∆ ∆ mutant MC13, which has a suppression rate of <10. When D-ala was removed from a growing culture of MC13, cells rounded and lysed within 40 minutes. Transient colonization of was achieved by inoculating squid in seawater containing MC13 and D-ala, and then transferring the squid into water lacking D-ala, which resulted in loss of viable symbionts within hours. Interestingly, the symbionts within crypt 3 persisted longer than those of crypt 1, suggesting a difference in bacterial growth rate in distinct crypt environments. Our study highlights a new approach for inducing transient colonization and provides insight into the biogeography of the light organ.IMPORTANCEThe importance of this study is multi-faceted, providing a valuable methodological tool and insight into the biology of the symbiosis between and . First, the study sheds light on the critical role of D-ala for bacterial growth, and the underpinnings of D-ala synthesis. Our observations that obviates the need for D-ala supplementation of an mutant in minimal medium and that MetC-dependent growth correlates with D-ala in peptidoglycan, corroborate and extend previous findings in regarding a role of MetC in D-ala production. Second, our isolation of robust D-ala auxotrophs led us to a novel method for studying the squid- symbiosis, allowing for transient colonization without the use of antibiotics, and revealed intriguing differences in symbiont growth parameters in distinct light organ crypts. This work and the methodology developed will contribute to our understanding of the persistence and dynamics of within its host.

摘要

和夏威夷短尾乌贼之间的共生关系是细菌-动物共生的一个易于处理且研究充分的模型。在这里,我们开发了一种使用共生体的 D-丙氨酸(D-ala)营养缺陷型来暂时定植的方法,通过提供或不提供 D-ala 来控制可行感染的持久性。我们生成了缺乏突变抑制营养缺陷型或回复为原养型途径的 的丙氨酸消旋酶()突变体。令人惊讶的是,一个 ∆ 突变体在最小培养基中生长不需要 D-ala,这一现象需要 ,它编码半胱氨酸 β-裂合酶。同样,在丰富的培养基中过表达 可以抑制 D-ala 的营养缺陷型。为了阻断潜在的抑制机制,我们将 ∆ 突变与缺失 和/或 (编码广谱消旋酶)结合,并研究了四个 D-ala 营养缺陷型菌株的抑制率。然后,我们将重点放在 ∆ ∆ 突变体 MC13 上,其抑制率<10。当从生长的 MC13 培养物中去除 D-ala 时,细胞在 40 分钟内圆化并裂解。通过在含有 MC13 和 D-ala 的海水中接种鱿鱼来实现 的暂时定植,然后将鱿鱼转移到不含 D-ala 的水中,这导致数小时内失去可行的共生体。有趣的是,与 crypt1 中的共生体相比,crypt3 中的共生体持续时间更长,这表明在不同的 crypt 环境中细菌生长速度存在差异。我们的研究强调了一种诱导暂时定植的新方法,并为 光器官的生物地理学提供了新的见解。

重要性

这项研究的重要性是多方面的,为 和 之间的共生关系提供了有价值的方法学工具和生物学见解。首先,该研究揭示了 D-ala 对细菌生长的重要性以及 D-ala 合成的基础。我们观察到 消除了 突变体在最小培养基中补充 D-ala 的需要,并且 MetC 依赖性生长与肽聚糖中的 D-ala 相关,这证实并扩展了以前在 中关于 MetC 在 D-ala 产生中的作用的发现。其次,我们分离出了稳健的 D-ala 营养缺陷型,这使我们能够使用新方法研究鱿鱼-共生关系,而无需使用抗生素,并且揭示了在不同的光器官隐窝中共生体生长参数的有趣差异。这项工作和所开发的方法将有助于我们理解 在其宿主中的持久性和动态。

相似文献

1
Transient infection of with an engineered D-alanine auxotroph of .与工程化的 D-丙氨酸营养缺陷型 的短暂感染。
Appl Environ Microbiol. 2024 Oct 23;90(10):e0129824. doi: 10.1128/aem.01298-24. Epub 2024 Sep 5.

本文引用的文献

1
Bacterial growth dynamics in a rhythmic symbiosis.细菌在有节奏共生关系中的生长动态。
Mol Biol Cell. 2024 Jun 1;35(6):ar79. doi: 10.1091/mbc.E24-01-0044. Epub 2024 Apr 10.
10
D-Amino acid metabolism in bacteria.细菌中的 D-氨基酸代谢。
J Biochem. 2021 Sep 22;170(1):5-13. doi: 10.1093/jb/mvab043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验