Ünal Aslı, Bozkaya Uğur
Department of Chemistry, Hacettepe University, Ankara, Turkey.
J Comput Chem. 2024 Dec 15;45(32):2969-2978. doi: 10.1002/jcc.27495. Epub 2024 Sep 5.
Orbital-optimized coupled-cluster methods are very helpful for theoretical predictions of the molecular properties of challenging chemical systems, such as excited states. In this research, an efficient implementation of the equation-of-motion orbital-optimized coupled-cluster doubles method with the density-fitting (DF) approach, denoted by DF-EOM-OCCD, is presented. The computational cost of the DF-EOM-OCCD method for excitation energies is compared with that of the conventional EOM-OCCD method. Our results demonstrate that DF-EOM-OCCD excitation energies are dramatically accelerated compared to EOM-OCCD. There are almost 17-fold reductions for the molecule in an aug-cc-pVTZ basis set with the RHF reference. This dramatic performance improvement comes from the reduced cost of integral transformation with the DF approach and the efficient evaluation of the particle-particle ladder (PPL) term, which is the most expensive term to evaluate. Further, our results show that the DF-EOM-OCCD approach is very helpful for the computation of excitation energies in open-shell molecular systems. Overall, we conclude that our new DF-EOM-OCCD implementation is very promising for the study of excited states in large-sized challenging chemical systems.
轨道优化耦合簇方法对于具有挑战性的化学体系(如激发态)的分子性质的理论预测非常有帮助。在本研究中,提出了一种采用密度拟合(DF)方法的运动方程轨道优化耦合簇双激发方法的高效实现方式,记为DF-EOM-OCCD。将DF-EOM-OCCD方法计算激发能的计算成本与传统的EOM-OCCD方法进行了比较。我们的结果表明,与EOM-OCCD相比,DF-EOM-OCCD的激发能计算速度显著加快。在以RHF为参考的aug-cc-pVTZ基组中,该分子的计算成本降低了近17倍。这种显著的性能提升源于采用DF方法时积分变换成本的降低以及对粒子-粒子阶梯(PPL)项的高效评估,而PPL项是评估成本最高的项。此外,我们的结果表明,DF-EOM-OCCD方法对于开壳层分子体系激发能的计算非常有帮助。总体而言,我们得出结论,我们新的DF-EOM-OCCD实现方式对于研究大型挑战性化学体系中的激发态非常有前景。